Skip to main content
Log in

Matching sequences of salient contour points characterized by Voronoi region features

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we introduce a shape matching method by matching sequences of salient contour points that are characterized by Voronoi region features. The proposed approach is summarized as follows: (1) a sequence of salient contour points is selected using the Voronoi diagram of the contour point set, (2) the features of the salient points are computed based on the interior and exterior regions of the Voronoi diagram, and (3) a cyclic edit distance is used to match two shapes. Tests on the MPEG-7 and ETH-80 datasets demonstrated the effectiveness and efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Veltkamp, R.C.: Shape matching: similarity measures and algorithms. Technical report UU-CS-2001-03, Utrecht University, 2001

  2. Pavlidis, T.: A review of algorithms for shape analysis. In: Comput. Graph. Image Process., vol. 7, pp. 243–258 (1978)

    Google Scholar 

  3. Sebastian, T.B., Kimia, B.B.: Curves vs skeletons in object recognition. In: ICIP (3), pp. 22–25 (2001)

    Google Scholar 

  4. Zahn, C., Roskie, R.: Fourier descriptors for plane closed curves. IEEE Trans. Comput. C-21(3), 269–281 (1972)

    Article  Google Scholar 

  5. Mokhtarian, F., Abbasi, S., Kittler, J.: Efficient and robust retrieval by shape content through curvature scale space. In: Image Databases and Multi-media Search, proceedings of the First International Workshop IDB-MMS’96, Amsterdam, The Netherlands, pp. 35–42 (1996)

    Google Scholar 

  6. Adoram, M., Lew, M.S.: IRUS: image retrieval using shape. In: IEEE International Conference on Multimedia Computing Systems, vol. 2, pp. 597–602 (1999)

    Chapter  Google Scholar 

  7. Arkin, E.M., Chew, L.P., Huttenlocher, D.P., Kedem, K., Mitchell, J.S.B.: An efficiently computable metric for comparing polygonal shapes. IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 209–215 (1991)

    Article  Google Scholar 

  8. Rote, G.: Computing the Frechet distance between piecewise smooth curves. In: Proceeding of the 20th European Workshop on Computational Geometry, pp. 147–150 (2004)

    Google Scholar 

  9. Prokop, R.J., Reeves, A.P.: A survey of moment-based techniques for unoccluded object representation and recognition. Comput. Vis. Graph. Image Process. 54(5), 438–460 (1992)

    Google Scholar 

  10. Sclaroff, S.: Deformable prototypes for encoding shape categories in image databases. Pattern Recognit. 30(4), 627–641 (1997)

    Article  Google Scholar 

  11. Hagedoorn, M., Veltkamp, R.C.: Reliable and efficient pattern matching using an affine invariant metric. Int. J. Comput. Vis. 31, 203–225 (1999)

    Article  Google Scholar 

  12. Liu, T., Geiger, D.: Approximate tree matching and shape similarity. In: ICCV, pp. 456–462 (1999)

    Google Scholar 

  13. Siddiqi, K., Shokoufandeh, A., Dickinson, S.J., Zucker, S.W.: Shock graphs and shape matching. Int. J. Comput. Vis. 55(1), 13–32 (1999)

    Article  Google Scholar 

  14. Blum, H.: A transformation for extracting new descriptors of shape. In: Dunn, W. (ed.) Symposium Models for Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)

    Google Scholar 

  15. Arcelli, C., di Baja, G.S.: Ridge points in Euclidean distance maps. Pattern Recognit. Lett. 13(4), 237–243 (1992)

    Article  Google Scholar 

  16. Lee, Y.-H., Horng, S.-J.: The chessboard distance transform and the medial axis transform are interchangeable. In: The 10th International Parallel Processing Symposium, pp. 424–428 (1996)

    Google Scholar 

  17. Attali, D., Montanvert, A.: Computing and simplifying 2D and 3D continuous skeletons. Comput. Vis. Image Underst. 67(3), 261–273 (1997)

    Article  Google Scholar 

  18. Zhu, S.C., Yuille, A.L.: FORMS: A flexible object recognition and modeling system. Int. J. Comput. Vis. 20(3), 187–212 (1996)

    Article  Google Scholar 

  19. Hiransakolwong, N., Vu, K., Hua, K.A., Lang, S.-D.: Shape recognition based on the medial axis approach. In: ICME, pp. 257–260 (2004)

    Google Scholar 

  20. Klein, P., Tirthapura, S., Sharvit, D., Kimia, B.: A tree-edit-distance algorithm for comparing simple, closed shapes. In: Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 696–704 (2000)

    Google Scholar 

  21. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing their shock graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 550–571 (2004)

    Article  Google Scholar 

  22. Gusfield, D.: Algorithms on Strings, Trees and Sequences—Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  23. Maes, M.: On a cyclic string-to-string correction problem. Inf. Process. Lett. 35(2), 73–78 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bille, P.: A survey on tree edit distance and related problems. Theor. Comput. Sci. 337(1–3), 217–239 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Klein, P.N.: Computing the edit-distance between unrooted ordered trees. In: Proc. 6th Ann. European Symp. on Algorithms (ESA), pp. 91–102. Springer, Berlin (1998)

    Google Scholar 

  26. Bille, P.: Ordered tree edit distance with merge and split operations. Technical report TR-2003-35. IT University of Copenhagen, September, 2003

  27. Shamos, M.I., Hoey, D.: Closest-point problems. In: Proc. 16th Annu. IEEE Sympos. Found. Comput. Sci, pp. 151–162 (1975)

    Google Scholar 

  28. Marzal, A., Palazón, V.: Dynamic time warping of cyclic strings for shape matching. In: Pattern Recognition and Image Analysis. Lecture Notes in Computer Science, vol. 3687, pp. 644–652 (2005)

    Chapter  Google Scholar 

  29. Latecki, L., Lakämper, R., Eckhardt, U.: Shape descriptors for non-rigid shapes with a single closed contour. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (2000)

    Google Scholar 

  30. Leibe, B., Schiele, B.: Analyzing appearance and contour based methods for object categorization. In: CVPR (2003)

    Google Scholar 

  31. Super, B.J.: Improving object recognition accuracy and speed through non-uniform sampling. In: Proc. SPIE Conference Intelligent Robots and Computer Vision XXI: Algorithms, Techniques, and Active Vision, Providence, RI. SPIE, vol. 5267, pp. 228–239 (2003)

    Google Scholar 

  32. Super, B.: Learning chance probability functions for shape retrieval or classification. In: IEEE Workshop on Learning in Comp. Vis. and Pat. Recog. (2004)

    Google Scholar 

  33. Attalla, E., Siy, P.: Robust shape similarity retrieval based on contour segmentation polygonal multiresolution and elastic matching. Pattern Recognit. 38, 2229–2241 (2005)

    Article  Google Scholar 

  34. McNeill, G.: Probabilistic shape matching and part decomposition. In: International Conference on Pattern Recognition (2006)

    Google Scholar 

  35. Felzenszwalb, P.F., Schwartz, J.: Hierarchical matching of deformable shapes. In: CVPR (2007)

    Google Scholar 

  36. Bai, X., Yang, X., Latecki, L.J., Liu, W., Tu, Z.: Learning context sensitive shape similarity by graph transduction. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 861–874 (2010)

    Article  Google Scholar 

  37. Yang, X., Koknar-Tezel, S., Latecki, L.J.: Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval. In: CVPR (2009)

    Google Scholar 

  38. Ding, L., Belkin, M.: Probabilistic mixtures of differential profiles for shape recognition. In: Proceedings of International Conference on Pattern Recognition (ICPR) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqing Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y., Jin, S. Matching sequences of salient contour points characterized by Voronoi region features. Vis Comput 28, 475–491 (2012). https://doi.org/10.1007/s00371-011-0643-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0643-2

Keywords

Navigation