Skip to main content
Log in

Robust two-stage face recognition approach using global and local features

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents a robust two-stage face recognition approach that combines the traits of global features in first stage and the local features in second stage. The global features are extracted from Zernike moments (ZMs) method that encompasses the useful characteristics of being invariant to image rotation, scale, and noise. The local features are obtained from the histogram-based Weber Law Descriptor (WLD) having tremendous qualities like invariance to scale, change in image intensities, rotation, and noise. The novelty of this paper is twofold: (1) an efficient approach is used for combining the global and local features which is based on the human psychology to trace and memorize the known persons, i.e., locate some similar faces from the overall appearance of different persons and later identify from this the specific individual on the basis of their interior differences like shape of eyes, nose, etc.; (2) a method is used for providing the weights to individual face patches in extraction of local features, which is based on the averaged discrimination competence of features within a patch. The performance of proposed two-stage face recognition approach is analyzed against some major hurdles of this system, i.e., illumination, expression, scale, pose, occlusion, and noise variations. The proposed method achieves the highest recognition rate of 98.0% and 94.1% on ORL and Yale databases, respectively. The experimental results on these well-known face databases demonstrate that the proposed method is highly robust to illumination variation and also generates superior results against other variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhao, W., Chellappa, R., Phillips, P., Rosenfeld, A.: Face recognition: a literature survey. ACM Comput. Surv. 35(4), 399–458 (2003)

    Article  Google Scholar 

  2. Hjelmas, E., Low, B.K.: Face detection: a survey. Comput. Vis. Image Underst. 83, 236–274 (2001)

    Article  MATH  Google Scholar 

  3. Turk, M.: A random walk through Eigenspace. IEICE Trans. Inf. Syst. E84-D(12), 1586–1595 (2001)

    Google Scholar 

  4. Moon, H., Phillips, P.J.: Computational and performance aspects of PCA-based face recognition algorithms. Perception 30, 303–321 (2001)

    Article  Google Scholar 

  5. Neerja, Walia, E.: Face recognition using improved fast PCA algorithm. In: Proc. IEEE Int. Congress on Image and Signal Processing, pp. 554–558 (2008)

    Google Scholar 

  6. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19, 711–720 (1997)

    Article  Google Scholar 

  7. Xu, Y., Zhang, D., Yang, J., Yang, J.-Y.: An approach for directly extracting features from matrix data and its application in face recognition. Neurocomputing 71, 1857–1865 (2008)

    Google Scholar 

  8. Daoqiang, Z., Zhi-Hua, Z.: (2D)2PCA: Two directional two dimensional PCA for efficient face representation and recognition. Neurocomputing 69, 224–231 (2005)

    Article  Google Scholar 

  9. Lai, J.H., Yuen, P.C., Feng, G.C.: Face recognition using holistic Fourier invariant features. Pattern Recognit. 34, 95–109 (2001)

    Article  MATH  Google Scholar 

  10. Dabbaghchian, S., Ghaemmaghami, M.P., Aghagolzadeh, A.: Feature extraction using discrete cosine transform and discrimination power analysis with a face recognition technology. Pattern Recognit. 43, 1431–1440 (2010)

    Article  MATH  Google Scholar 

  11. Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70, 920–930 (1980)

    Article  MathSciNet  Google Scholar 

  12. Teh, C.H., Chin, R.T.: On image analysis by the methods of moments. IEEE Trans. Pattern Anal. Mach. Intell. 10, 496–511 (1988)

    Article  MATH  Google Scholar 

  13. Singh, C., Walia, E.: Fast and numerically stable methods for the computation of Zernike moments. Pattern Recognit. 43(7), 2497–2506 (2010)

    Article  MATH  Google Scholar 

  14. Wee, C.-Y., Paramesran, R.: On the computational aspects of Zernike moments. Image Vis. Comput. 25, 967–980 (2007)

    Article  Google Scholar 

  15. Haddandnia, J., Faez, K., Moallem, P.: Neural network based face recognition with moment invariants. In: Proc. IEEE Int. Conf. on Image Processing, pp. 1018–1021 (2001)

    Google Scholar 

  16. Nor’aini, A.J., Raveendran, P., Selvanathan, N.: Human face recognition using Zernike moments and nearest neighbor classifier. In: Proc. 4th student Conf. on Research and Development, pp. 120–123 (2006)

    Google Scholar 

  17. Nor’aini, A.J., Raveendran, P., Selvanathan, N.: A comparative analysis of Zernike moments and principal components analysis as feature extractors for face recognition. In: Proc. 3rd Kuala Lumpur Int. Conf. on Biomedical Engg., pp. 37–41 (2006)

    Google Scholar 

  18. Pang, Y.-H., Teoh, A.B.J., Ngo, D.C.L.: Enhanced pseudo Zernike moments in face recognition. IEICE Electron. Express 2, 70–75 (2005)

    Article  Google Scholar 

  19. Pang, Y.-H., Teoh, A.B.J., Ngo, D.C.L.: A discriminant pseudo Zernike moments in face recognition. J. Res. Pract. Inf. Technol. 38(2), 197–210 (2006)

    Google Scholar 

  20. Haddandnia, J., Ahmadi, M., Faez, K.: An efficient feature extraction method with pseudo-Zernike moments in RBF neural network-based human face recognition system. EURASIP J. Appl. Signal Process. 9, 890–901 (2003)

    Google Scholar 

  21. Faez, K., Farajzadeh, N.: A performance comparison of the ZM, PZM and LM in the face recognition system in presence of salt–pepper noise. In: Proc. IEEE Int. Conf. on Sys. Man and Cybernetics, pp. 4197–4201 (2006)

    Google Scholar 

  22. Nabatchian, A., Abdel-Raheem, E., Ahmadi, M.: Human face recognition using different moment invariants: a comparative study. In: Proc. IEEE Int. Congress on Image and Signal Processing, pp. 661–666 (2008)

    Google Scholar 

  23. Singh, C., Mittal, N., Walia, E.: Face recognition using Zernike and complex Zernike moment features. Pattern Recognit. Image Anal. 21(1), 71–81 (2011)

    Article  Google Scholar 

  24. Abate, A.F., Nappi, M., Riccio, D., Sabatino, G.: 2D and 3D face recognition: a survey. Pattern Recognit. 28, 1885–1906 (2007)

    Article  Google Scholar 

  25. Zhang, X., Gao, Y.: Face recognition across pose: a review. Pattern Recognit. 42, 2876–2896 (2009)

    Article  Google Scholar 

  26. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  27. Soyel, H., Demirel, H.: Facial expression recognition based discriminative scale invariant feature transform. IET Electron. Lett. 46(5), 343–345 (2010)

    Article  Google Scholar 

  28. Kanan, H.R., Faez, K., Gao, Y.: Face recognition using adaptively weighted patch PZM array from a single exemplar image per person. Pattern Recognit. 41, 3799–3812 (2008)

    Article  MATH  Google Scholar 

  29. Huang, L., Shimizu, A., Kobatake, H.: Robust face detection using Gabor filter features. Pattern Recognit. Lett. 26(11), 1641–1649 (2005)

    Article  Google Scholar 

  30. Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)

    Article  Google Scholar 

  31. Jun, B., Kim, T., Kim, D.: A compact local binary pattern using maximization of mutual information for face analysis. Pattern Recognit. 44, 532–543 (2011)

    Article  MATH  Google Scholar 

  32. Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recognit. 42, 425–436 (2009)

    Article  MATH  Google Scholar 

  33. Chen, J., Shan, S., He, C., Zhao, G., Pietikäinen, M., Chen, X., Gao, W.: WLD: A robust local image descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1705–1719 (2010)

    Article  Google Scholar 

  34. Su, Y., Shan, S., Chen, X., Gao, W.: Hierarchical ensemble of global and local classifiers for face recognition. IEEE Trans. Image Process. 18(8), 1885–1895 (2009)

    Article  MathSciNet  Google Scholar 

  35. Kim, C., Oh, J., Choi, C.: Combined subspace method using global and local features for face recognition. In: Proc. IEEE Int. Joint Conf. on Neural Networks, vol. 4, pp. 2030–2035 (2005)

    Chapter  Google Scholar 

  36. Zhou, D., Yang, X., Peng, N., Wang, Y.: Improved-LDA based face recognition using both facial global and local information. Pattern Recognit. Lett. 27, 536–543 (2006)

    Article  Google Scholar 

  37. Fang, Y., Tan, T., Wang, Y.: Fusion of global and local features for face verification. In: Proc. IEEE Conf. on Pattern Recognition, vol. 2, pp. 382–385 (2002)

    Google Scholar 

  38. Liu, Z., Liu, C.: Fusion of color, local spatial and global frequency information for face recognition. Pattern Recognit. 43, 2882–2890 (2010)

    Article  MATH  Google Scholar 

  39. Lajevardi, S.M., Hussain, Z.M.: Higher order orthogonal moments for invariant facial expression recognition. Digit. Signal Process. 20, 1771–1779 (2010)

    Article  Google Scholar 

  40. Wang, J., Ma, Z., Zhang, B., Qi, M., Kong, J.: A structure-preserved local matching approach for face recognition. Pattern Recognit. Lett. 32, 494–504 (2011)

    Article  Google Scholar 

  41. Wang, Y., Wu, Y.: Face recognition using Intrinsicfaces. Pattern Recognit. 43, 3580–3590 (2010)

    Article  MATH  Google Scholar 

  42. Zhi, R., Ruan, Q.: Two-dimensional direct and weighted linear discriminant analysis for face recognition. Neurocomputing 71, 3607–3611 (2008)

    Article  Google Scholar 

  43. Soundar, K.R., Murugesan, K.: Preserving global and local information—a combined approach for recognizing face images. IET Comput. Vis. 4(3), 173–182 (2010)

    Article  MathSciNet  Google Scholar 

  44. Yale face database. http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

  45. Olivetti Research Laboratory (ORL) face database. http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

Download references

Acknowledgements

The authors are grateful to All India Council for Technical Education (AICTE), Govt. of India, New Delhi, India, for supporting the research work vide their file number 8013/RID/BOR/RPS-77/2005-06. We are also thankful to anonymous reviewers whose comments helped us to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neerja Mittal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, C., Walia, E. & Mittal, N. Robust two-stage face recognition approach using global and local features. Vis Comput 28, 1085–1098 (2012). https://doi.org/10.1007/s00371-011-0659-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0659-7

Keywords

Navigation