Skip to main content
Log in

Accumulation of local maximum intensity for feature enhanced volume rendering

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Maximum Intensity Difference Accumulation (MIDA) combines the advantage of Direct Volume Rendering (DVR) and Maximum Intensity Projection (MIP). However, many features with local maximum intensity are still missing in the final rendering image. This paper presents a novel approach to focus on features with local maximum intensity within the dataset. Moving Least Squares (MLS) is used to smooth each ray profile during the raycasting in order to eliminate noise in the data and to highlight significant transition points on the profile. We then adopt a local minimum-point searching method to analyze the ray profile, and identify the transition points that mark the local maximum intensity points within the dataset. At the rendering stage, we implement a novel local intensity difference accumulation (LIDA) to accumulate the colors and opacity. Surface shading is introduced to improve the spatial cues of the features. We also employ tone-reduction to preserve the original local contrast. Our approach can highlight local features in the dataset without involving the adjustment of transfer functions. The experiments demonstrate high-quality rendering results at an interactive frame rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kniss, J., Kindlmann, G., Hansen, C.: Multidimensional transfer functions for interactive volume rendering. IEEE Trans. Vis. Comput. Graph. 8(3), 270–285 (2002)

    Article  Google Scholar 

  2. Correa, C., Ma, K.L.: The occlusion spectrum for volume classification and visualization. IEEE Trans. Vis. Comput. Graph. 15(6), 1465–1472 (2009)

    Article  Google Scholar 

  3. Kindlmann, G., Durkin, J.W.: Semi-automatic generation of transfer functions for direct volume rendering. In: Proceedings of the 1998 IEEE Symposium on Volume Visualization, pp. 79–86 (1998)

    Chapter  Google Scholar 

  4. Tzeng, F.Y., Lum, E.B., Ma, K.L.: An intelligent system approach to higher-dimensional classification of volume data. IEEE Trans. Vis. Comput. Graph. 11(3), 273–284 (2005)

    Article  Google Scholar 

  5. Correa, C., Ma, K.L.: Visibility-driven transfer functions. In: Proceedings of IEEE Pacific Visualization Symposium, pp. 177–184 (2009)

    Chapter  Google Scholar 

  6. Correa, C., Ma, K.L.: Visibility histograms and visibility-driven transfer functions. IEEE Trans. Vis. Comput. Graph. 17(2), 192–204 (2011)

    Article  Google Scholar 

  7. Wallis, J., Miller, T., Lerner, C., et al.: Three-dimensional display in nuclear medicine. IEEE Trans. Med. Imaging 8(4), 297–303 (1989)

    Article  Google Scholar 

  8. Heidrich, W., Mccool, M., Stevens, J.: Interactive maximum projection volume rendering. In: Proceedings of IEEE Visualization, pp. 11–18 (1995)

    Google Scholar 

  9. Díaz, J., Vázquez, P.: Depth-enhanced maximum intensity projection. In: 8th IEEE/EG International Symposium on Volume Graphics, pp. 93–100 (2010)

    Google Scholar 

  10. Sato, Y., Shiraga, N., Nakajima, S., et al.: Local maximum intensity projection (LMIP): A new rendering method for vascular visualization. J. Comput. Assist. Tomogr. 22(6), 912–917 (1998)

    Article  Google Scholar 

  11. Zhou, Z.G., Tao, Y.B., Lin, H., Dong, F., Clapworthy, G.: Shape-based maximum intensity projection. Vis. Comput. 27, 677–686 (2011)

    Article  Google Scholar 

  12. Levoy, M.: Volume rendering using the Fourier projection-slice theorem. In: Proceedings of the Conference on Graphics Interface, pp. 61–69 (1992)

    Google Scholar 

  13. Malzbender, T.: Fourier volume rendering. ACM Trans. Graph. 12(3), 233–250 (1993)

    Article  MATH  Google Scholar 

  14. Rezk-Salama, C., Kolb, A.: Opacity peeling for direct volume rendering. Comput. Graph. Forum 25(3), 597–606 (2006)

    Article  Google Scholar 

  15. Subramanian, N., Vaidya, V., Mullick, R., et al.: Volumetric peeling: feature centric visualization using membership functions. In: Proceedings of ACM SIGGRAPH Posters, pp. 1–4 (2008)

    Chapter  Google Scholar 

  16. Malik, M.M., Möller, T., Gröller, M.E.: Feature peeling. In: Proceedings of Graphics Interface, pp. 273–280 (2007)

    Chapter  Google Scholar 

  17. Viola, I., Kanitsar, A., Gröller, M.E.: Importance-driven volume rendering. In: Proceedings of IEEE Visualization, pp. 139–146 (2004)

    Google Scholar 

  18. Viola, I., Kanitsar, A., Gröller, M.E.: Importance-driven feature enhancement in volume visualization. IEEE Trans. Vis. Comput. Graph. 11(4), 408–418 (2005)

    Article  Google Scholar 

  19. Bruckner, S., Gröller, M.E.: Instant volume visualization using maximum intensity difference accumulation. Comput. Graph. Forum 28(3), 775–782 (2009)

    Article  Google Scholar 

  20. Bruckner, S., Solteszova, V., Gröller, E., et al.: BrainGazer—visual queries for neurobiology research. IEEE Trans. Vis. Comput. Graph. 15(6), 1497–1504 (2009)

    Article  Google Scholar 

  21. Wan, Y., Hansen, C.: Fast volumetric data exploration with importance-based accumulated transparency modulation. In: 8th IEEE/EG International Symposium on Volume Graphics, pp. 61–68 (2010)

    Google Scholar 

  22. Max, N.: Optical models for direct volume rendering. IEEE Trans. Vis. Comput. Graph. 1(2), 99–108 (1995)

    Article  Google Scholar 

  23. Chen, Z.Q., Wang, Y.Z., Li, B., et al.: A survey of methods for moving least squares surfaces. In: IEEE/EG Symposium on Volume and Point-Based Graphics, pp. 9–23 (2008)

    Google Scholar 

  24. Drago, F., Myszkowski, K., Annen, T., et al.: Adaptive logarithmic mapping for displaying high contrast scenes. Comput. Graph. Forum 22(3), 419–426 (2003)

    Article  Google Scholar 

  25. Meyer-Spradow, J., Ropinski, T., Mensmann, J., et al.: Voreen: A rapid-prototyping environment for ray-casting-based volume visualizations. IEEE Comput. Graph. Appl. 29(6), 6–13 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Foundation of China (NSFC) project under Grant No. 61070114 and the Zhejiang Provincial Natural Foundation under Grant Nos. Z1090630 and Y1101043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfei Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, R., Wu, Y., Dong, F. et al. Accumulation of local maximum intensity for feature enhanced volume rendering. Vis Comput 28, 625–633 (2012). https://doi.org/10.1007/s00371-012-0680-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0680-5

Keywords

Navigation