Skip to main content
Log in

Combination of bag-of-words descriptors for robust partial shape retrieval

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents a 3D shape retrieval algorithm based on the Bag of Words (BoW) paradigm. For a given 3D shape, the proposed approach considers a set of feature points uniformly sampled on the surface and associated with local Fourier descriptors. This descriptor is computed in the neighborhood of each feature point by projecting the geometry onto the eigenvectors of the Laplace–Beltrami operator; it is very informative, robust to connectivity and geometry changes, and also fast to compute. In a preliminary step, a visual dictionary is built by clustering a large set of feature descriptors, then each 3D shape is described by an histogram of occurrences of these visual words, hence discarding any spatial information. A spatially-sensitive algorithm is also presented where the 3D shape is described by an histogram of pairs of visual words. We show that these two approaches are complementary and can be combined to improve the performance and the robustness of the retrieval. The performances have been compared against very recent state-of-the-art methods on several different datasets. For global shape retrieval, our combined approach is comparable to these recent works, however, it clearly outperforms them in the case of partial shape retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. http://www.cim.mcgill.ca/~shape/benchMark/.

  2. http://watertight.ge.imati.cnr.it/.

  3. http://partial.ge.imati.cnr.it/.

  4. http://tosca.cs.technion.ac.il/book/shrec_correspondence.html.

References

  1. Agathos, A., Pratikakis, I., Papadakis, P., Perantonis, S., Azariadis, P., Sapidis, N.: Retrieval of 3D articulated objects using a graph-based representation. In: Eurographics Workshop on 3D Object Retrieval (2009)

    Google Scholar 

  2. Ben-Chen, M., Gotsman, C.: Characterizing shape using conformal factors. In: Eurographics Workshop on 3D Object Retrieval (2008)

    Google Scholar 

  3. Bowers, J., Wang, R., Wei, L.y., Maletz, D.: Parallel Poisson disk sampling with spectrum analysis on surfaces. In: SIGGRAPH Asia (2010)

    Google Scholar 

  4. Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape Google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. 30(1), 1–20 (2011)

    Article  Google Scholar 

  5. Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. Int. J. Comput. Vis. 89(2–3), 266–286 (2009)

    Google Scholar 

  6. Chen, D., Tian, X., Shen, Y.T., Ming, O.: On visual similarity based 3D model retrieval. Comput. Graph. Forum 22(3), 223–232 (2003)

    Article  Google Scholar 

  7. Cornea, N., Demirci, M.: 3D object retrieval using many-to-many matching of reconstruction-based curve skeletons. In: Veltkamp, R.C., ter Haar, F.B. (eds.) SHREC2007 3D Shape Retrieval Contest, pp. 50–52 (2007)

    Google Scholar 

  8. Csurka, G., Dance, C., Fan, L., Willamowski, J., Cedric, B.: Visual categorization with bags of keypoints. In: ECCV International Workshop on Statistical Learning in Computer Vision (2004)

    Google Scholar 

  9. Dey, T., Li, K., Luo, C., Ranjan, P., Safa, I., Wang, Y.: Persistent heat signature for pose-oblivious matching of incomplete models. Comput. Graph. Forum 29(5), 1545–1554 (2010)

    Article  Google Scholar 

  10. Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: Computer Vision and Pattern Recognition, pp. 524–531 (2005)

    Google Scholar 

  11. Ferreira, A., Marini, S., Attene, M., Fonseca, M.J., Spagnuolo, M., Jorge, J.a., Falcidieno, B.: Thesaurus-based 3D object retrieval with part-in-whole matching. Int. J. Comput. Vis. 89(2–3), 327–347 (2009)

    Google Scholar 

  12. Fu, Y., Zhou, B.: Direct sampling on surfaces for high quality remeshing. Comput. Aided Geom. Des. 26(6), 711–723 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A search engine for 3D models. ACM Trans. Graph. 22(1), 83 (2003)

    Article  Google Scholar 

  14. Funkhouser, T., Shilane, P.: Partial matching of 3D shapes with priority-driven search. In: Eurographics Symposium on Geometry Processing, p. 142 (2006)

    Google Scholar 

  15. Gal, R., Shamir, A., Cohen-Or, D.: Pose-oblivious shape signature. IEEE Trans. Vis. Comput. Graph. 13(2), 261–271 (2007)

    Article  Google Scholar 

  16. Itskovich, A., Tal, A.: Surface partial matching & application to archeology. Comput. Graph. Forum 35, 334–341 (2011)

    Google Scholar 

  17. Jain, V., Zhang, H.: A spectral approach to shape-based retrieval of articulated 3D models. Comput. Aided Des. 39(5), 398 (2007)

    Article  Google Scholar 

  18. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 20(4), 422 (2002)

    Article  Google Scholar 

  19. Lavoué, G.: Bag of words and local spectral descriptor for 3d partial shape retrieval. In: Eurographics Workshop on 3D Object Retrieval (2011)

    Google Scholar 

  20. Lévy, B., Zhang, H.: Spectral mesh processing. In: Siggraph 2010 Course (2010)

    Google Scholar 

  21. Li, X., Godil, A.: Exploring the Bag-of-Words method for 3D shape retrieval. In: IEEE International Conference on Image Processing, pp. 437–440 (2009)

    Google Scholar 

  22. Lian, Z., Godil, A., Sun, X.: Visual similarity based 3D shape retrieval using bag-of-features. In: Shape Modeling International (2010)

    Google Scholar 

  23. Liu, Y., Zha, H., Qin, H.: Shape topics: a compact representation and new algorithms for 3D partial shape retrieval. In: Computer Vision and Pattern Recognition, pp. 2025–2032 (2006)

    Google Scholar 

  24. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  26. Marini, S., Patané, G., Spagnuolo, M., Falcidieno, B.: Feature selection for enhanced spectral shape comparison. In: Eurographics Workshop on 3D Object Retrieval (2010)

    Google Scholar 

  27. Marini, S., Biasotti, S., Spagnuolo, M., Falcidieno, B.: Sub-part correspondence by structural descriptors of 3D shapes. In: Veltkamp, R.C., ter Haar, F.B. (eds.) SHREC2007 3D Shape Retrieval Contest, pp. 53–55 (2007)

    Google Scholar 

  28. Mikolajczyk, K., Schmid, C.: Performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  29. Ohbuchi, R., Osada, K., Furuya, T., Banno, T.: Others: salient local visual features for shape-based 3D model retrieval. In: Shape Modeling International (2008)

    Google Scholar 

  30. Papadakis, P., Pratikakis, I., Theoharis, T., Passalis, G.: 3D object retrieval using an efficient and compact hybrid shape descriptor. In: Eurographics Workshop on 3D Object Retrieval (2008)

    Google Scholar 

  31. Reuter, M., Wolter, F., Peinecke, N.: Laplace-Beltrami spectra as shape-DNA of surfaces and solids. Comput. Aided Des. 38(4), 342–366 (2006)

    Article  Google Scholar 

  32. Ruggeri, M.R., Patanè, G., Spagnuolo, M., Saupe, D.: Spectral-driven isometry-invariant matching of 3D shapes. Int. J. Comput. Vis. 89(2–3), 248–265 (2009)

    Google Scholar 

  33. Rustamov, R.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Eurographics Symposium on Geometry Processing, pp. 225–233 (2007)

    Google Scholar 

  34. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape benchmark. In: Shape Modeling International, pp. 167–388 (2004)

    Google Scholar 

  35. Sipiran, I., Bustos, B.: Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes. Vis. Comput. 27(11), 963–976 (2011)

    Article  Google Scholar 

  36. Sun, J., Chen, X., Funkhouser, T.: Fuzzy geodesics and consistent sparse correspondences for deformable shapes. Comput. Graph. Forum 29(5), 1535–1544 (2010)

    Article  Google Scholar 

  37. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28(5), 1383–1392 (2009)

    Article  Google Scholar 

  38. Tabia, H., Colot, O., Daoudi, M., Vandeborre, J.P.: 3D-Shape retrieval using curves and HMM. In: IEEE International Conference on Pattern Recognition (2010)

    Google Scholar 

  39. Tierny, J., Vandeborre, J.P., Daoudi, M.: Partial 3D shape retrieval by Reeb pattern unfolding. Comput. Graph. Forum 28(1), 41–55 (2009)

    Article  Google Scholar 

  40. Toldo, R., Castellani, U., Fusiello, A.: Visual vocabulary signature for 3D object retrieval and partial matching. In: Eurographics Workshop on 3D Object Retrieval (2009)

    Google Scholar 

  41. Vallet, B., Lévy, B.: Spectral geometry processing with manifold harmonics. Comput. Graph. Forum 27(2), 251–260 (2008)

    Article  Google Scholar 

  42. Wang, K.: Quantization-based blind watermarking of three-dimensional meshes. Ph.d. thesis, Institut National des Sciences Appliquées de Lyon (2009)

Download references

Acknowledgements

We thank the anonymous reviewers for helping us to greatly improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Lavoué.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavoué, G. Combination of bag-of-words descriptors for robust partial shape retrieval. Vis Comput 28, 931–942 (2012). https://doi.org/10.1007/s00371-012-0724-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0724-x

Keywords

Navigation