Skip to main content
Log in

An immersive multi-agent system for interactive applications

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents an interactive multi-agent system based on a fully immersive virtual environment. A user can interact with the virtual characters in real time via an avatar by changing their moving behavior. Moreover, the user is allowed to select any character as the avatar to be controlled. A path planning algorithm is proposed to address the problem of dynamic navigation of individual and groups of characters in the multi-agent system. A natural interface is designed for the interaction between the user and the virtual characters, as well as the virtual environment, based on gesture recognition. To evaluate the efficiency of the dynamic navigation method, performance results are provided. The presented system has the potential to be used in the training and evaluation of emergency evacuation and other real-time applications of crowd simulation with interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Algorithm 2
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arikan, O., Chenney, S., Forsyth, D.A.: Efficient multi-agent path planning. In: Proceedings of the Eurographic Workshop on Computer Animation and Simulation, pp. 151–162. Springer, Manchester (2001)

    Google Scholar 

  2. van den Berg, J., Patil, S., Sewall, J., Manocha, D., Lin, M.: Interactive navigation of multiple agents in crowded environments. In: Proceedings of the 2008 Symposium on Interactive 3D Graphics and Games, I3D’08, pp. 139–147. ACM, New York (2008)

    Chapter  Google Scholar 

  3. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using the relative velocity paradigm. In: IEEE International Conference on Robotics and Automation, pp. 560–565. IEEE Comp. Soc., Atlanta (1993)

    Chapter  Google Scholar 

  4. Fortune, S.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2(1), 153–174 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Geraerts, R., Overmars, M.H.: The corridor map method: a general framework for real-time high-quality path planning. Comput. Animat. Virtual Worlds 18(2), 107–119 (2007)

    Article  Google Scholar 

  6. Gerald, C.F., Wheatley, P.O.: Applied Numerical Analysis, 7th edn. Addison Wesley, Boston (2004)

    Google Scholar 

  7. Goldenstein, S., Karavelas, M., Metaxas, D., Guibas, L., Aaron, E., Goswami, A.: Scalable nonlinear dynamical systems for agent steering and crowd simulation. Comput. Graph. 25(6), 983–998 (2001)

    Article  Google Scholar 

  8. Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian crowd dynamics: experiments, simulations, and design solutions. Transp. Sci. 39(1), 1–24 (2005)

    Article  Google Scholar 

  9. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995)

    Article  Google Scholar 

  10. Hughes, R.L.: A continuum theory for the flow of pedestrians. Transp. Res. Part B 36(6), 507–535 (2002)

    Article  Google Scholar 

  11. Kamphuis, A., Overmars, M.H.: Finding paths for coherent groups using clearance. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 19–28. Eurographics Association, Grenoble (2004)

    Chapter  Google Scholar 

  12. Kapadia, M., Singh, S., Hewlett, W., Faloutsos, P.: Egocentric affordance fields in pedestrian steering. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, Boston, pp. 215–223 (2009)

    Chapter  Google Scholar 

  13. Karamouzas, I., Geraerts, R., Overmars, M.: Indicative routes for path planning and crowd simulation. In: Proceedings of the 4th International Conference on Foundations of Digital Games, pp. 113–120. ACM, Orlando (2009)

    Chapter  Google Scholar 

  14. Karamouzas, I., Heil, P., Beek, P., Overmars, M.H.: A predictive collision avoidance model for pedestrian simulation. In: Proceedings of the 2nd International Workshop on Motion in Games, pp. 41–52. Springer, Zeist (2009)

    Chapter  Google Scholar 

  15. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  16. Lamarche, F., Donikian, S.: Crowd of virtual humans: a new approach for real time navigation in complex and structured environments. Comput. Graph. Forum 23(3), 509–518 (2004)

    Article  Google Scholar 

  17. Morini, F., Yersin, B., Maym, J., Thalmann, D.: Real-time scalable motion planning for crowds. In: Proceedings of the 2007 International Conference on Cyberworlds, pp. 144–151. IEEE Comput. Soc., Hannover (2007)

    Chapter  Google Scholar 

  18. Patil, S., van den Berg, J., Curtis, S., Lin, M.C., Manocha, D.: Directing crowd simulations using navigation fields. IEEE Trans. Vis. Comput. Graph. 17(2), 244–254 (2011)

    Article  Google Scholar 

  19. Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-density crowd simulation. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 99–108. Eurographics Association, San Diego (2007)

    Google Scholar 

  20. Pettre, J., Ciechomski, P.D., Maim, J., Yersin, B., Laumond, J.P., Thalmann, D.: Real-time navigating crowds: scalable simulation and rendering. Comput. Animat. Virtual Worlds 17(3–4), 445–455 (2006)

    Article  Google Scholar 

  21. Pettre, J., Grillon, H., Thalmann, D.: Crowds of moving objects: navigation planning and simulation. In: 2007 IEEE International Conference on Robotics and Automation, pp. 3062–3067 (2007)

    Chapter  Google Scholar 

  22. Rao, Y., Chen, L., Liu, Q., Lin, W., Li, Y., Zhou, J.: Real-time control of individual agents for crowd simulation. Multimed. Tools Appl. 54(2), 397–414 (2011)

    Article  Google Scholar 

  23. Reynolds, C.W.: Steering behaviors for autonomous characters. In: Proceedings of Game Developers Conference, pp. 763–782. Miller Freeman Game Group, San Jose (1999)

    Google Scholar 

  24. Rodriguez, S., Denny, J., Burgos, J., Mahadevan, A., Manavi, K., Murray, L., Kodochygov, A., Zourntos, T., Amato, N.M.: Toward realistic pursuit-evasion using a roadmap-based approach. In: IEEE International Conference on Robotics and Automation, Shanghai, pp. 1738–1745 (2011)

    Google Scholar 

  25. Salomon, B., Garber, M., Lin, M.C., Manocha, D.: Interactive navigation in complex environments using path planning. In: Proceedings of the 2003 Symposium on Interactive 3D Graphics, I3D’03, pp. 41–50. ACM, New York (2003)

    Chapter  Google Scholar 

  26. Sud, A., Andersen, E., Curtis, S., Lin, M.C., Manocha, D.: Real-time path planning in dynamic virtual environments using multiagent navigation graphs. IEEE Trans. Vis. Comput. Graph. 14(3), 526–538 (2008)

    Article  Google Scholar 

  27. Takahashi, S., Yoshida, K., Kwon, T., Lee, K.H., Lee, J., Shin, S.Y.: Spectral-based group formation control. Comput. Graph. Forum 28(2), 639–648 (2009)

    Article  Google Scholar 

  28. Treuille, A., Cooper, S., Popovic, Z.: Continuum crowds. ACM Trans. Graph. 25(3), 1160–1168 (2006)

    Article  Google Scholar 

  29. Yersin, B., Maim, J., Morini, F., Thalmann, D.: Real-time crowd motion planning: scalable avoidance and group behavior. Vis. Comput. 24(10), 859–870 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Valroman Francisco and Robert Rafon for their excellent work on designing the three-dimensional models and human motions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Dubey, R., Magnenat-Thalmann, N. et al. An immersive multi-agent system for interactive applications. Vis Comput 29, 323–332 (2013). https://doi.org/10.1007/s00371-012-0735-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0735-7

Keywords

Navigation