Skip to main content
Log in

Right of way

Asymmetric agent interactions in crowds

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Pedestrian models typically represent interactions between agents in a symmetric fashion. In general, these symmetric relationships are valid for a large number of crowd simulation scenarios. However, there are many cases in which symmetric responses between agents are inappropriate, leading to unrealistic behavior or undesirable simulation artifacts. We present a novel formulation, called right of way, which provides a well-disciplined mechanism for modeling asymmetric relationships between pedestrians. Right of way is a general principle, which can be applied to different types of pedestrian models. We illustrate this by applying right of way to three different pedestrian models (two based on social forces and one based on velocity obstacles) and show its impact in multiple scenarios. Particularly, we show how it enables simulation of the complex relationships exhibited by pilgrims performing the Islamic religious ritual, the Tawaf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. “Best” in this case is defined by the optimization function. Typically, it is simply the velocity that has the minimum Euclidean distance to the preferred velocity.

  2. If the agent were perfectly capable of maintaining its position, it would travel no distance at all.

References

  1. Van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: Inter. Symp. on Robotics Research (2009)

    Google Scholar 

  2. Blue, V.J., Adler, J.L.: Emergent fundamental pedestrian flows from cellular automata microsimulation. Transp. Res. Rec. 1644, 29–36 (1998)

    Article  Google Scholar 

  3. Blue, V.J., Adler, J.L.: Cellular automata microsimulation of bidirectional pedestrian flows. Transp. Res. Rec. 1678, 135–141 (1999)

    Article  Google Scholar 

  4. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295, 507–525 (2001)

    Article  MATH  Google Scholar 

  5. Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force model for pedestrian dynamics. Phys. Rev. E 82(4), 046,111 (2010)

    Article  Google Scholar 

  6. Curtis, S., Guy, S.J., Zafar, B., Manocha, D.: Virtual Tawaf: a case study in simulating the behavior of dense, heterogeneous crowds. In: 1st IEEE Workshop on Modeling, Simulation and Visual Analysis of Large Crowds (2011)

    Google Scholar 

  7. Durupinar, F., Pelechano, N., Allbeck, J., Gudukbay, U., Badler, N.: The impact of the ocean personality model on the perception of crowds. IEEE Comput. Graph. Appl. 31(3), 22–31 (2011)

    Google Scholar 

  8. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–762 (1998)

    Article  Google Scholar 

  9. Funge, J., Tu, X., Terzopoulos, D.: Cognitive modeling: knowledge, reasoning and planning for intelligent characters. In: SIGGRAPH, pp. 29–38. ACM, New York (1999)

    Google Scholar 

  10. Guy, S.J., Chhugani, J., Curtis, S., Lin, M.C., Dubey, P., Manocha, D.: Pledestrians: a least-effort approach to crowd simulation. In: Symposium on Computer Animation. ACM, New York (2010)

    Google Scholar 

  11. Guy, S.J., Kim, S., Lin, M.C., Manocha, D.: Simulating heterogeneous crowd behaviors using personality trait theory. In: SCA’11, pp. 43–52 (2011)

    Google Scholar 

  12. Guy, S.J., Lin, M.C., Manocha, D.: Modeling collision avoidance behavior for virtual humans. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, vol. 2, pp. 575–582 (2010)

    Google Scholar 

  13. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–790 (2000)

    Article  Google Scholar 

  14. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 51(5), 4282–4286 (1995)

    Article  Google Scholar 

  15. Hirai, K., Tarui, K.: A simulation of the behavior of a crowd in panic. In: Proc. of the 1975 International Conference on Cybernetics and Society, pp. 409–411 (1975)

    Google Scholar 

  16. Johansson, A.D.H., Shukla, P.K.: Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Adv. Complex Syst. 10, 271–288 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ju, E., Choi, M.G., Park, M., Lee, J., Lee, K.H., Takahashi, S.: Morphable crowds. ACM Trans. Graph. 29(6), 140 (2010)

    Article  Google Scholar 

  18. Karamouzas, I., Heil, P., van Beek, P., Overmars, M.H.: A predictive collision avoidance model for pedestrian simulation. In: Motion in Games. Lecture Notes in Computer Science, vol. 5884, pp. 41–52. Springer, Berlin (2009)

    Chapter  Google Scholar 

  19. Kretz, T., Grünebohm, A., Schreckenberg, M.: Experimental study of pedestrian flow through a bottleneck. J. Stat. Mech. Theory Exp. P10014 (2006)

  20. Lee, K.H., Choi, M.G., Hong, Q., Lee, J.: Group behavior from video: a data-driven approach to crowd simulation. In: Symposium on Computer Animation, pp. 109–118 (2007)

    Google Scholar 

  21. Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5(4), e10,047 (2010)

    Article  Google Scholar 

  22. Müller, K.: Zur Gestaltung und Bemessung von Fluchtwegen für die Evakuierung von Personen aus Bauwerken auf der Grundlage von Modellversuchen. Ph.D. thesis, Technische Hochschule Otto von Guericke, Magdeburg (1981)

  23. Nagai, R., Fukamachi, M., Nagatan, T.: Evacuation of crawlers and walkers from corridor through an exit. Physica A 367, 449–460 (2006)

    Article  Google Scholar 

  24. Narain, R., Golas, A., Curtis, S., Lin, M.C.: Aggregate dynamics for dense crowd simulation. ACM Trans. Graph. 28, 122:1–122:8 (2009)

    Article  Google Scholar 

  25. Ondřej, J., Pettré, J., Olivier, A.H., Donikian, S.: A synthetic-vision based steering approach for crowd simulation. In: Proc. SIGGRAPH, pp. 123:1–123:9 (2010)

    Google Scholar 

  26. Patil, S., van den Berg, J., Curtis, S., Lin, M., Manocha, D.: Directing crowd simulations using navigation fields. In: IEEE TVCG, pp. 244–254 (2010)

    Google Scholar 

  27. Pelechano, N., Allbeck, J., Badler, N.: Controlling individual agents in high-density crowd simulation. In: SCA07 (2007)

    Google Scholar 

  28. Pettré, J., Ondřej, J., Olivier, A.H., Cretual, A., Donikian, S.: Experiment-based modeling, simulation and validation of interactions between virtual walkers. In: SCA’09, pp. 189–198. ACM, New York (2009)

    Google Scholar 

  29. Pettré, J., Ondřej, J., Olivier, A.H., Cretual, A., Donikian, S.: Experiment-based modeling, simulation and validation of interactions between virtual walkers. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’09), pp. 189–198 (2009)

    Chapter  Google Scholar 

  30. Plaue, M., Chen, M., Bärwolff, G., Schwandt, H.: Trajectory extraction and density analysis of interesecting pedestrian flows from video recordings. In: Proceedings of the 2011 ISPRS Conference on Photogrammetric Image Analysis (2011)

    Google Scholar 

  31. Reynolds, C.: Flocks, herds and schools: a distributed behavioral model. In: SIGGRAPH (1987)

    Google Scholar 

  32. Schadschneider, A.: Cellular automaton approach to pedestrian dynamics—theory. In: Pedestrian and Evacuation Dynamics, pp. 77–86 (2001)

    Google Scholar 

  33. Seyfried, A., Passon, O., Steffen, B., Boltes, M., Rupprecht, T., Klingsch, W.: New insights into pedestrian flow through bottlenecks. Transp. Sci. 43, 395–406 (2009)

    Article  Google Scholar 

  34. Seyfried, A., Schadschneider, A., Kemloh, U., Chraibi, M.: Force-based models of pedestrian dynamics. Netw. Heterog. Media 6(3), 425–442 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. In: ACM SIGGRAPH 2006, pp. 1160–1168. ACM, New York (2006)

    Chapter  Google Scholar 

  36. Ulicny, B., Thalmann, D.: Towards interactive real-time crowd behavior simulation. Comput. Graph. Forum 21(4), 767–775 (2002)

    Article  Google Scholar 

  37. Yamamoto, K., Kokubo, S., Nishinari, K.: Simulation for pedestrian dynamics by real-coded cellular automata (RCA). Physica A 379, 654–660 (2007)

    Article  Google Scholar 

  38. Yeh, H., Curtis, S., Patil, S., van den Berg, J., Manocha, D., Lin, M.: Composite agents. In: Proc. of SCA, pp. 39–47 (2008)

    Google Scholar 

  39. Yu, Q., Terzopoulos, D.: A decision network framework for the behavioral animation of virtual humans. In: Symposium on Computer Animation, pp. 119–128 (2007)

    Google Scholar 

  40. Yu, W.J., Chen, R., Dong, L.Y., Dai, S.Q.: Centrifugal force model for pedestrian dynamics. Phys. Rev. E 72, 026,112 (2005)

    Article  Google Scholar 

  41. Zafar, B.: Analysis of the Mataf–Ramadan 1432 AH. Tech. rep, Hajj Research Institute, Umm al-Qura University, Saudi Arabia (2011)

  42. Zanlungo, F., Ikeda, T., Kanda, T.: Social force model with explicit collision prediction. Europhys. Lett. 93, 68,005 (2011)

    Article  Google Scholar 

  43. Zhang, J., Klingsch, W., Schadschneider, A., Seyfried, A.: Transitions in pedestrian fundamental diagrams of straight corridors and t-junctions. J. Stat. Mech. 2011(06), P06,004 (2011)

    Article  Google Scholar 

  44. Zhang, J., Klingsch, W., Schadschneider, A., Seyfried, A.: Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram. J. Stat. Mech. 2012(02), P02,002 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Francesco Zanlungo for discussions in extending his collision-prediction social-force pedestrian model and Atila Oǧuz Boyali for permitting the use of his photograph in Fig. 10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Curtis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curtis, S., Zafar, B., Gutub, A. et al. Right of way. Vis Comput 29, 1277–1292 (2013). https://doi.org/10.1007/s00371-012-0769-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0769-x

Keywords

Navigation