Skip to main content
Log in

Generalized Hermitian Radial Basis Functions Implicits from polygonal mesh constraints

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this work we investigate a generalized interpolation approach using radial basis functions to reconstruct implicit surfaces from polygonal meshes. With this method, the user can define with great flexibility three sets of constraint interpolants: points, normals, and tangents; allowing to balance computational complexity, precision, and feature modeling. Furthermore, this flexibility makes possible to avoid untrustworthy information, such as normals estimated on triangles with bad aspect ratio. We present results of the method for applications related to the problem of modeling 2D curves from polygons and 3D surfaces from polygonal meshes. We also apply the method to problems involving subdivision surfaces and front-tracking of moving boundaries. Finally, as our technique generalizes the recently proposed HRBF Implicits technique, comparisons with this approach are also conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alexa, M., Adamson, A.: Interpolatory point set surfaces—convexity and Hermite data. ACM Trans. Graph. 28(2) (2009)

  2. Bloomenthal, J.: An implicit surface polygonizer. In: Graphics Gems IV, pp. 324–349. Academic Press, San Diego (1994)

    Google Scholar 

  3. Boyé, S., Guennebaud, G., Schlick, C.: Least squares subdivision surfaces. Comput. Graph. Forum 29(7), 2021–2028 (2010)

    Article  Google Scholar 

  4. Brazil, E.V., Macêdo, I., Sousa, M.C., de Figueiredo, L.H., Velho, L.: Sketching variational Hermite–RBF implicits. In: Proceedings of the Seventh Sketch-Based Interfaces and Modeling Symposium, SBIM ’10, pp. 1–8. Eurographics Association, Geneva (2010)

    Google Scholar 

  5. Brazil, E.V., Macêdo, I., Sousa, M.C., Velho, L., de Figueiredo, L.H.: Shape and tone depiction for implicit surfaces. Comput. Graph. 35(1), 43–53 (2011)

    Article  Google Scholar 

  6. Brochu, T., Bridson, R.: Robust topological operations for dynamic explicit surfaces. SIAM J. Sci. Comput. 31(4), 2472–2493 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buhmann, M.D.: Radial Basis Functions. Cambridge University Press, New York (2003)

    Book  MATH  Google Scholar 

  8. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01, pp. 67–76. ACM, New York (2001)

    Chapter  Google Scholar 

  9. Cazals, F., Pouget, M.: Topology driven algorithms for ridge extraction on meshes. Technical Report RR-5526, INRIA (2005)

  10. Chen, Y., Davis, T.A., Hager, W.W., Rajamanickam, S.: Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35(3), 1–14 (2008)

    Article  MathSciNet  Google Scholar 

  11. Du, J., Fix, B., Glimm, J., Jia, X., Li, X., Li, Y., Wu, L.: A simple package for front tracking. J. Comput. Phys. 213(2), 613–628 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I.: A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 83–116 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fasshauer, G.F.: Meshfree Approximation Methods with MATLAB. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  14. Fasshauer, G.E., Zhang, J.G.: Iterated approximate moving least squares approximation. In: Advances in Meshfree Techniques, pp. 221–240. Springer, Berlin (2007)

    Chapter  Google Scholar 

  15. Gelas, A., Bernard, O., Friboulet, D., Prost, R.: Compactly supported radial basis functions based collocation method for level-set evolution in image segmentation. IEEE Trans. Image Process. 16, 1873–1887 (2007)

    Article  MathSciNet  Google Scholar 

  16. Gois, J.P., Buscaglia, G.C.: Resampling strategies for deforming MLS surfaces. Comput. Graph. Forum 29(6), 1969–1980 (2010)

    Article  Google Scholar 

  17. Gois, J.P., Nakano, A., Nonato, L.G., Buscaglia, G.C.: Front tracking with moving-least-squares surfaces. J. Comput. Phys. 227(22), 9643–9669 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gomes, A.J.P., Voiculescu, I., Jorge, J., Wyvill, B., Galbraith, C.: Implicit Curves and Surfaces: Mathematics, Data Structures and Algorithms. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  19. Guennebaud, G., Gross, M.: Algebraic point set surfaces. In: Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’ 07. ACM, New York (2007), article 23

    Google Scholar 

  20. Jin, X., Sun, H., Peng, Q.: Subdivision interpolating implicit surfaces. Comput. Graph. 27(5), 763–772 (2003)

    Article  Google Scholar 

  21. Kanai, T., Ohtake, Y., Kase, K.: Hierarchical error-driven approximation of implicit surfaces from polygonal meshes. In: Eurographics Symposium on Geometry Processing, SGP ’06, pp. 21–30. Eurographics Association, Geneva (2006)

    Google Scholar 

  22. Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. ACM Trans. Graph. 24(3), 659–666 (2005)

    Article  Google Scholar 

  23. Lucas, B.C., Kazhdan, M., Taylor, R.H.: Spring level sets: a deformable model representation to provide interoperability between meshes and level sets. IEEE Trans. Vis. Comput. Graph. 19(5), 852–865 (2013)

    Article  Google Scholar 

  24. Macêdo, I., Gois, J.P., Velho, L.: Hermite radial basis functions implicits. Comput. Graph. Forum 30(1), 27–42 (2011)

    Article  Google Scholar 

  25. Morse, B., Yoo, T., Rheingans, P., Chen, D., Subramanian, K.: Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions. In: International Conference on Shape Modeling and Applications, SMI, pp. 89–98 (2001)

    Chapter  Google Scholar 

  26. Müller, M.: Fast and robust tracking of fluid surfaces. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’09, pp. 237–245 (2009)

    Chapter  Google Scholar 

  27. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.-P.: Multi-level partition of unity implicits. ACM Trans. Graph. 22, 463–470 (2003)

    Article  Google Scholar 

  28. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences., vol. 153. Springer, Berlin (2003)

    MATH  Google Scholar 

  29. Pan, R., Meng, X., Whangbo, T.: Hermite variational implicit surface reconstruction. Sci. China, Ser. F 52(2), 308–315 (2009)

    Article  MATH  Google Scholar 

  30. Park, T., Lee, S.-H., Kim, C.-H.: Analytic solutions of integral moving least squares for polygon soups. IEEE Trans. Vis. Comput. Graph. 18(10), 1638–1649 (2012)

    Article  Google Scholar 

  31. Pébay, P.P., Baker, T.J.: Analysis of triangle quality measures. Math. Comput. 72(244), 1817–1839 (2003)

    Article  MATH  Google Scholar 

  32. Pereira, T., Brazil, E.V., Macêdo, I., Sousa, M.C., de Figueiredo, L.H., Velho, L.: Sketch-based warping of RGBN images. Graph. Models 73, 97–110 (2011)

    Article  Google Scholar 

  33. Savchenko, V.V., Pasko, A.A., Okunev, O.G., Kunii, T.L.: Function representation of solids reconstructed from scattered surface points and contours. Comput. Graph. Forum 14(4), 181–188 (1995)

    Article  Google Scholar 

  34. Shen, C., O’Brien, J.F., Shewchuk, J.R.: Interpolating and approximating implicit surfaces from polygon soup. ACM Trans. Graph. 23, 896–904 (2004)

    Article  Google Scholar 

  35. Turk, G., O’Brien, J.F.: Shape transformation using variational implicit functions. In: Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’99, pp. 335–342 (1999)

    Chapter  Google Scholar 

  36. Vrankar, L., Kansa, E., Ling, L., Runovc, F., Turk, G.: Moving-boundary problems solved by adaptive radial basis functions. Comput. Fluids 39(9), 1480–1490 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Walder, C., Schölkopf, B., Chapelle, O.: Implicit surface modelling with a globally regularised basis of compact support. Comput. Graph. Forum 25(3), 635–644 (2006)

    Article  Google Scholar 

  38. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  39. Xie, X., Mirmehdi, M.: Radial basis function based level set interpolation and evolution for deformable modelling. Image Vis. Comput. 29, 167–177 (2011)

    Article  Google Scholar 

  40. Yngve, G., Turk, G.: Robust creation of implicit surfaces from polygonal meshes. IEEE Trans. Vis. Comput. Graph. 8, 346–359 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank to FAPESP—Fundação de Amparo à Pesquisa do Estado de São Paulo, CNPq—National Council for Scientific and Technological Development and CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. Homer and Pig models are provided courtesy of INRIA by the AIM@SHAPE Shape Repository.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Paulo Gois.

Appendix: Formulas for radial functions

Appendix: Formulas for radial functions

In this appendix we provide the gradients and Hessians for the radial functions employed in this work to simplify the computational implementation.

Polyharmonic Spline

The Polyharmonic Spline is the globally supported radial function:

$$\phi(\mathbf {x}) = \|\mathbf {x}\|^3 $$

and conditionally positive definite of order 2 [13], which makes necessary the use of a first-order polynomial to ensure unicity in the solution. Its gradient reads

$$\nabla\phi(\mathbf {x}) = 3\mathbf {x}\|\mathbf {x}\|, $$

and its Hessian is

where is the identity matrix. Posing Hϕ(0):=0 3×3 ensures Hessian’s continuity [5].

Compactly supported Wendland’s function

Wendland provides a family of compactly supported positive definite radial functions [38]. The Wendland Compactly Supported RBFs are in the form ϕ d,k with various degrees of continuity (\(\mathcal{C}^{k}\)) and dimensionality d [25, 38]. In this work we use the function:

$$\phi_{3,1}(\mathbf {x}) = \bigl(1-\|\mathbf {x}\| \bigr)_+^4 \bigl(4\|\mathbf {x}\|+1 \bigr). $$

The gradient of this Wendland function reads

$$\nabla\phi_{3,1}(\mathbf {x}) = -20 \bigl(1 - \|\mathbf {x}\| \bigr)_+^3\mathbf {x}$$

whereas its Hessian is

and posing ensures Hessian continuity. The size of the support for Wendland’s radial functions can be changed by posing: \(\phi (\mathbf {y}) = \phi (\frac{\mathbf {x}}{h} )\), where h is the user-tuned support radius parameter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gois, J.P., Trevisan, D.F., Batagelo, H.C. et al. Generalized Hermitian Radial Basis Functions Implicits from polygonal mesh constraints. Vis Comput 29, 651–661 (2013). https://doi.org/10.1007/s00371-013-0802-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0802-8

Keywords

Navigation