Skip to main content

Advertisement

Log in

Efficient collision detection for composite finite element simulation of cuts in deformable bodies

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Composite finite elements (CFEs) based on a hexahedral discretization of the simulation domain have recently shown their effectiveness in physically based simulation of deformable bodies with changing topology. In this paper we present an efficient collision detection method for CFE simulation of cuts. Our method exploits the specific characteristics of CFEs, i.e., the fact that the number of simulation degrees of freedom is significantly reduced. We show that this feature not only leads to a faster deformation simulation, but also enables a faster collision detection. To address the non-conforming properties of geometric composition and hexahedral discretization, we propose a topology-aware interpolation approach for the computation of penetration depth. We show that this approach leads to accurate collision detection on complex boundaries. Our results demonstrate that by using our method cutting on high-resolution deformable bodies including collision detection and response can be performed at interactive rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hackbusch, W., Sauter, S.: Composite finite elements for the approximation of pdes on domains with complicated micro-structures. Numer. Math. 75, 447–472 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Nesme, M., Kry, P.G., Jeřábková, L., Faure, F.: Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28, 52:1–52:9 (2009)

    Article  Google Scholar 

  3. Dick, C., Georgii, J., Westermann, R.: A hexahedral multigrid approach for simulating cuts in deformable objects. IEEE Trans. Vis. Comput. Graph. 17(11), 1663–1675 (2011)

    Article  Google Scholar 

  4. Jeřábková, L., Bousquet, G., Barbier, S., Faure, F., Allard, J.: Volumetric modeling and interactive cutting of deformable bodies. Prog. Biophys. Mol. Biol. 103(2–3), 217–224 (2010)

    Article  Google Scholar 

  5. Wu, J., Dick, C., Westermann, R.: Interactive high-resolution boundary surfaces for deformable bodies with changing topology. In: Workshop on Virtual Reality Interaction and Physical Simulation (VRIPHYS), pp. 29–38 (2011)

    Google Scholar 

  6. Sauter, S., Warnke, R.: Composite finite elements for elliptic boundary value problems with discontinuous coefficients. Computing 77(1), 29–55 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Preusser, T., Rumpf, M., Schwen, L.O.: Finite element simulation of bone microstructures. In: Proceedings of the 14th Workshop on the Finite Element Method in Biomedical Engineering, Biomechanics and Related Fields, pp. 52–66 (2007). University of Ulm, July 2007

    Google Scholar 

  8. Liehr, F., Preusser, T., Rumpf, M., Sauter, S., Schwen, L.O.: Composite finite elements for 3d image based computing. Comput. Vis. Sci. 12(4), 171–188 (2009)

    Article  MathSciNet  Google Scholar 

  9. Seiler, M., Steinemann, D., Spillmann, J., Harders, M.: Robust interactive cutting based on an adaptive octree simulation mesh. Vis. Comput. 27(6), 519–529 (2011)

    Article  Google Scholar 

  10. Pietroni, N., Ganovelli, F., Cignoni, P., Scopigno, R.: Splitting cubes: a fast and robust technique for virtual cutting. Vis. Comput. 25(3), 227–239 (2009)

    Article  Google Scholar 

  11. Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring of hermite data. ACM Trans. Graph. 21, 339–346 (2002)

    Article  Google Scholar 

  12. Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G., Raghupathi, L., Fuhrmann, A., Cani, M.-P., Faure, F., Magnenat-Thalmann, N., Straßer, W., Volino, P.: Collision detection for deformable objects. Comput. Graph. Forum 24(1), 61–81 (2005)

    Article  Google Scholar 

  13. Teschner, M., Heidelberger, B., Müller, M., Pomerantes, D., Gross, M.H.: Optimized spatial hashing for collision detection of deformable objects. In: The Vision, Modeling, and Visualization Conference, pp. 47–54 (2003)

    Google Scholar 

  14. Hoff, K.E. III, Zaferakis, A., Lin, M., Manocha, D.: Fast and simple 2d geometric proximity queries using graphics hardware. In: I3D ’01: Symposium on Interactive 3D Graphics, pp. 145–148. ACM, New York (2001)

    Google Scholar 

  15. Heidelberger, B., Teschner, M., Gross, M.: Detection of collisions and self-collisions using image-space techniques. J. WSCG 12(3), 145–152 (2004)

    Google Scholar 

  16. Faure, F., Barbier, S., Allard, J., Falipou, F.: Image-based collision detection and response between arbitrary volume objects. In: SCA ’08: Symposium on Computer Animation, pp. 155–162. Eurographics, Zurich (2008)

    Google Scholar 

  17. Otaduy, M., Chassot, O., Steinemann, D., Gross, M.: Balanced hierarchies for collision detection between fracturing objects. In: VR ’07: IEEE Virtual Reality Conference, pp. 83–90 (March 2007)

    Chapter  Google Scholar 

  18. Heo, J.-P., Seong, J.-K., Kim, D., Otaduy, M.A., Hong, J.-M., Tang, M., Yoon, S.-E.: Fastcd: fracturing-aware stable collision detection. In: SCA ’10: Symposium on Computer Animation, pp. 149–158 (2010)

    Google Scholar 

  19. Glondu, L., Schvartzman, S., Marchal, M., Dumont, G., Otaduy, M.: Efficient collision detection for brittle fracture. In: SCA ’12: Symposium on Computer Animation, pp. 285–294 (2012)

    Google Scholar 

  20. James, D., Pai, D.: Bd-tree: output-sensitive collision detection for reduced deformable models. ACM Trans. Graph. 23, 393–398 (2004)

    Article  Google Scholar 

  21. Schvartzman, S.C., Gascón, J., Otaduy, M.A.: Bounded normal trees for reduced deformations of triangulated surfaces. In: SCA ’09: Symposium on Computer Animation, pp. 75–82 (2009)

    Google Scholar 

  22. Barbič, J., James, D.: Subspace self-collision culling. ACM Trans. Graph. 29(4), 81 (2010)

    Google Scholar 

  23. Hirota, G., Fisher, S., State, A., Lee, C., Fuchs, H.: An implicit finite element method for elastic solids in contact. In: Proc. the Computer Animation, pp. 136–254 (2001)

    Google Scholar 

  24. Fisher, S., Lin, M.C.: Deformed distance fields for simulation of non-penetrating flexible bodies. In: Eurographic Workshop on Computer Animation and Simulation, pp. 99–111 (2001)

    Google Scholar 

  25. McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., Sifakis, E.: Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph. 30, 37:1–37:12 (2011)

    Article  Google Scholar 

  26. Todd, D.: b4wind user’s guide—trilinear interpolation. www.grc.nasa.gov/WWW/winddocs/utilities/b4wind_guide/trilinear.html [Online; accessed, 30 July 2012]

  27. Jones, M., Baerentzen, J., Sramek, M.: 3d distance fields: a survey of techniques and applications. IEEE Trans. Vis. Comput. Graph. 12, 581–599 (2006)

    Article  Google Scholar 

  28. Cuisenaire, O.: Region growing Euclidean distance transforms. In: The 9th International Conference on Image Analysis and Processing, pp. 263–270 (1997)

    Chapter  Google Scholar 

  29. Satherley, R., Jones, M.: Hybrid distance field computation. In: Proc. Volume Graphics, pp. 195–209 (2001)

    Google Scholar 

  30. Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D.: Fast proximity queries with swept sphere volumes. Technical report TR99-018, Department of Computer Science, University of North Carolina, 1999

  31. Wu, J., Wang, D., Wang, C., Zhang, Y.: Toward stable and realistic haptic interaction for tooth preparation simulation. J. Comput. Inf. Sci. Eng. 10(2), 021007 (2010)

    Article  Google Scholar 

  32. Barbič, J., James, D.L.: Six-dof haptic rendering of contact between geometrically complex reduced deformable models. IEEE Trans. Haptics 1, 39–52 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The first author, Jun Wu, is supported by the Erasmus Mundus TANDEM, an European Commission funded program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(AVI 18.8 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Dick, C. & Westermann, R. Efficient collision detection for composite finite element simulation of cuts in deformable bodies. Vis Comput 29, 739–749 (2013). https://doi.org/10.1007/s00371-013-0810-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0810-8

Keywords

Navigation