Skip to main content
Log in

A multiresolution descriptor for deformable 3D shape retrieval

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we present a spectral graph wavelet framework for the analysis and design of efficient shape signatures for nonrigid 3D shape retrieval. Although this work focuses primarily on shape retrieval, our approach is, however, fairly general and can be used to address other 3D shape analysis problems. In a bid to capture the global and local geometry of 3D shapes, we propose a multiresolution signature via a cubic spline wavelet generating kernel. The parameters of the proposed signature can be easily determined as a trade-off between effectiveness and compactness. Experimental results on two standard 3D shape benchmarks demonstrate the much better performance of the proposed shape retrieval approach in comparison with three state-of-the-art methods. Additionally, our approach yields a higher retrieval accuracy when used in conjunction with the intrinsic spatial partition matching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang, Y., Lin, H., Zhang, Y.: Content-based 3-D model retrieval: a survey. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 37(6), 1081–1098 (2007)

    Article  Google Scholar 

  2. Tangelder, J., Veltkamp, R.: A survey of content based 3D shape retrieval methods. Multimed. Tools Appl. 39(3), 441–471 (2008)

    Article  Google Scholar 

  3. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape benchmark. In: Proc. Shape Modeling International, pp. 167–178 (2004)

    Google Scholar 

  4. Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y., Lavoue, G., Nguyen, H., Ohbuchi, R., Ohkita, Y., Ohishi, Y., Porikli, F., Reuter, M., Sipiran, I., Smeets, D., Suetens, P., Tabia, H., Vandermeulen, D.: SHREC’11 track: shape retrieval on non-rigid 3D watertight meshes. In: Proc. Eurographics Symp. 3D Object Retrieval, pp. 79–88 (2011)

    Google Scholar 

  5. Li, B., Godil, A., Aono, M., Bai, X., Furuya, T., Li, L., López-Sastre, R., Johan, H., Ohbuchi, R., Redondo-Cabrera, C., Tatsuma, A., Yanagimachi, T., Zhang, S.: SHREC’12 track: generic 3D shape retrieval. In: Proc. Eurographics Conf. 3D Object Retrieval, pp. 119–126 (2012)

    Google Scholar 

  6. Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y., Lavoué, G., Nguyen, H.V., Ohbuchi, R., Ohkita, Y., Ohishi, Y., Porikli, F., Reuter, M., Sipiran, I., Smeets, D., Suetens, P., Tabia, H., Vandermeulen, D.: A comparison of methods for non-rigid 3D shape retrieval. Pattern Recognit. 46(1), 449–461 (2013)

    Article  Google Scholar 

  7. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Lévy, B.: Laplace–Beltrami eigenfunctions: towards an algorithm that “understands” geometry. In: Proc. IEEE Int. Conf. Shape Modeling and Applications, p. 13 (2006)

    Google Scholar 

  9. Reuter, M., Wolter, F., Peinecke, N.: Laplace–Beltrami spectra as ‘Shape-DNA’ of surfaces and solids. Comput. Aided Des. 38(4), 342–366 (2006)

    Article  Google Scholar 

  10. Reuter, M.: Hierarchical shape segmentation and registration via topological features of Laplace–Beltrami eigenfunctions. Int. J. Comput. Vis. 89(2), 287–308 (2010)

    Article  Google Scholar 

  11. Rustamov, R.: Laplace–Beltrami eigenfunctions for deformation invariant shape representation. In: Proc. Symposium on Geometry Processing, pp. 225–233 (2007)

    Google Scholar 

  12. Bronstein, A., Bronstein, M., Guibas, L., Ovsjanikov, M.: Shape Google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. 30(1), 1–20 (2011)

    Article  Google Scholar 

  13. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Proc. Eurographics Sympo. Geometry Processing, pp. 156–164 (2003)

    Google Scholar 

  14. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28(5), 1383–1392 (2009)

    Article  Google Scholar 

  15. Gȩbal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape analysis using the auto diffusion function. Comput. Graph. Forum 28(5), 1405–1513 (2009)

    Article  Google Scholar 

  16. Kokkinos, I., Bronstein, M., Litman, R., Bronstein, A.: Intrinsic shape context descriptors for deformable shapes. In: Proc. Computer Vision and Pattern Recognition, pp. 159–166 (2012)

    Google Scholar 

  17. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: Proc. Computational Methods for the Innovative Design of Electrical Devices, pp. 1626–1633 (2011)

    Google Scholar 

  18. Bronstein, A.: Spectral descriptors for deformable shapes. CoRR abs/1110.5015 (2011)

  19. Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press, San Diego (2008)

    Google Scholar 

  20. Coifman, R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 5–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hammond, D., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 30(2), 129–150 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kim, W., Pachauri, D., Hatt, C., Chung, M., Johnson, S., Singh, V.: Wavelet based multi-scale shape features on arbitrary surfaces for cortical thickness discrimination. In: Proc. NIPS, pp. 1135–1143 (2012)

    Google Scholar 

  23. Rosenberg, S.: The Laplacian on a Riemannian Manifold. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  24. Bronstein, A., Bronstein, M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Springer, Berlin (2008)

    MATH  Google Scholar 

  25. Meyer, M., Desbrun, M., Schröder, P., Barr, A.: Discrete differential-geometry operators for triangulated 2-manifolds. Vis. Math. III 3(7), 35–57 (2003)

    Article  Google Scholar 

  26. Wardetzky, M., Mathur, S., Kälberer, F., Grinspun, E.: Discrete Laplace operators: no free lunch. In: Proc. Eurographics Sympo. Geometry Processing, pp. 33–37 (2007)

    Google Scholar 

  27. Lian, Z., Godil, A., Fabry, T., Furuya, T., Hermans, J., Ohbuchi, R., Shu, C., Smeets, D., Suetens, P., Vandermeulen, D., Wuhrer, S.: SHREC’10 track: non-rigid 3D shape retrieval. In: Proc. Eurographics Sympo. 3D Object Retrieval, pp. 101–108 (2010)

    Google Scholar 

  28. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proc. CVPR, vol. 2, pp. 2169–2178 (2006)

    Google Scholar 

  29. Järvelin, K., Kekäläinen, J.: IR evaluation methods for retrieving highly relevant documents. In: Proc. SIGIR, pp. 41–48 (2000)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSERC Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ben Hamza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Ben Hamza, A. A multiresolution descriptor for deformable 3D shape retrieval. Vis Comput 29, 513–524 (2013). https://doi.org/10.1007/s00371-013-0815-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0815-3

Keywords

Navigation