Skip to main content
Log in

Interactive chromaticity mapping for multispectral images

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Multispectral images record detailed color spectra at each image pixel. To display a multispectral image on conventional output devices, a chromaticity mapping function is needed to map the spectral vector of each pixel to the displayable three dimensional color space. In this paper, we present an interactive method for locally adjusting the chromaticity mapping of a multispectral image. The user specifies edits to the chromaticity mapping via a sparse set of strokes at selected image locations and wavelengths, then our method automatically propagates the edits to the rest of the multispectral image. The key idea of our approach is to factorize the multispectral image into a component that indicates spatial coherence between different pixels, and one that describes spectral coherence between different wavelengths. Based on this factorized representation, a two-step algorithm is developed to efficiently propagate the edits in the spatial and spectral domains separately. The method presented provides photographers with efficient control over color appearance and scene details in a manner not possible with conventional color image editing. We demonstrate the use of interactive chromaticity mapping in the applications of color stylization to emulate the appearance of photographic films, enhancement of image details, and manipulation of different light transport effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alien Skin Software, LLC.: Exposure4. http://www.alienskin.com/exposure/index.aspx

  2. An, X., Pellacini, F.: Appprop: all-pairs appearance-space edit propagation. In: SIGGRAPH ’08: ACM SIGGRAPH 2008 Papers, pp. 1–9. ACM, New York (2008). doi:10.1145/1399504.1360639

    Google Scholar 

  3. Cao, X., Tong, X., Dai, Q., Lin, S.: High resolution multispectral video capture with a hybrid camera system. In: Proc. of Comp. Vis. and Pattern Rec. (CVPR) (2009)

    Google Scholar 

  4. Carroll, J., Neitz, J., Neitz, M.: Estimates of lm cone ratio from erg flicker photometry and genetics. J. Vis. 2((8):1), 531–542 (2002)

    Google Scholar 

  5. Chakrabarti, A., Zickler, T.: Statistics of real-world hyperspectral images. In: IEEE Int. Conf. Comp. (2011)

    Google Scholar 

  6. Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: Computer Graphics Proceedings, Annual Conference Series. Proceedings of SIGGRAPH, vol. 97, pp. 369–378 (1997)

    Google Scholar 

  7. Descour, M.R., Dereniak, E.L.: Computed-tomography imaging spectrometer: experimental calibration and reconstruction results. Appl. Opt. 34(22), 4817–4826 (1995)

    Article  Google Scholar 

  8. Du, H., Tong, X., Cao, X., Lin, S.: A prism-based system for multispectral video acquisition. In: Proc. of Int’l Conf. on Comp. Vis. (ICCV) (2009)

    Google Scholar 

  9. Farbman, Z., Fattal, R., Lischinski, D.: Diffusion maps for edge-aware image editing. ACM Trans. Graph. 29(6), 145:1–145:10 (2010). http://doi.acm.org/10.1145/1882261.1866171

    Article  Google Scholar 

  10. Galatsanos, N., Segall, A., Katsaggelos, A.: Digital Image Enhancement. Encycl. Optical Engineering (2005)

    Google Scholar 

  11. Gat, N.: Imaging spectroscopy using tunable filters: a review. In: SPIE Wavelet Appl. VII, vol. 4056, pp. 50–64 (2000)

    Chapter  Google Scholar 

  12. Gehm, M.E., John, R., Brady, D.J., Willett, R., Schultz, T.: Single-shot compressive spectral imaging with a dual-disperser architecture. Opt. Express 15(21), 14013–14027 (2007)

    Article  Google Scholar 

  13. Jolliffe, I.: Principal Component Analysis. Springer Series in Statistics. Springer, Berlin (2002). http://books.google.com/books?id=_olByCrhjwIC

    MATH  Google Scholar 

  14. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graph. 23(3), 689–694 (2004) (SIGGRAPH 2004)

    Article  Google Scholar 

  15. Li, Y., Ju, T., Hu, S.M.: Instant propagation of sparse edits on images and videos. Comput. Graph. Forum, 2049–2054 (2010)

  16. Lischinski, D., Farbman, Z., Uyttendaele, M., Szeliski, R.: Interactive local adjustment of tonal values. ACM Trans. Graph. 25(3), 646–653 (2006). http://doi.acm.org/10.1145/1141911.1141936

    Article  Google Scholar 

  17. Mohan, A., Raskar, R., Tumblin, J.: Agile spectrum imaging: programmable wavelength modulation for cameras and projectors. Comput. Graph. Forum 27(2), 709–717 (2008)

    Article  Google Scholar 

  18. Mooney, J.M., Vickers, V.E., An, M., Brodzik, A.K.: High-throughput hyperspectral infrared camera. J. Opt. Soc. Am. A 14(11), 2951–2961 (1997)

    Article  Google Scholar 

  19. Ng, R., Ramamoorthi, R., Hanrahan, P.: All-frequency shadows using non-linear wavelet lighting approximation. ACM Trans. Graph. 22(3), 376–381 (2003)

    Article  Google Scholar 

  20. Park, J., Lee, M., Grossberg, M.D., Nayar, S.K.: Multispectral imaging using multiplexed illumination. In: Proc. of Int’l Conf. on Comp. Vis. (ICCV) (2007)

    Google Scholar 

  21. Peers, P., Mahajan, D.K., Lamond, B., Ghosh, A., Matusik, W., Ramamoorthi, R., Debevec, P.: Compressive light transport sensing. ACM Trans. Graph. 28(1), 3:1–3:18 (2009)

    Article  Google Scholar 

  22. Pellacini, F., Lawrence, J.: Appwand: editing measured materials using appearance-driven optimization. ACM Trans. Graph. 26(3) (2007). http://doi.acm.org/10.1145/1276377.1276444

  23. Schechner, Y.Y., Nayar, S.K.: Generalized mosaicing: wide field of view multispectral imaging. IEEE Trans. Pattern Anal. Mach. Intell. 24(10), 1334–1348 (2002)

    Article  Google Scholar 

  24. Vandervlugt, C., Masterson, H., Hagen, N., Dereniak, E.L.: Reconfigurable liquid crystal dispersing element for a computed tomography imaging spectrometer. Proc. SPIE 6565 (2007)

  25. Wagadarikar, A., John, R., Willett, R., Brady, D.J.: Single disperser design for coded aperture snapshot spectral imaging. Appl. Opt. 47(10), B44–B51 (2008)

    Article  Google Scholar 

  26. Wandell, B.A., Silverstein, L.D.: The Science of Color, 2nd edn., Chap. Digital Color Reproduction. Opt. Soc. Am., Washington (2003)

    Google Scholar 

  27. Wang, J., Dong, Y., Tong, X., Lin, Z., Guo, B.: Kernel Nyström method for light transport. ACM Trans. Graph. 28(3), 29:1–29:10 (2009) (SIGGRAPH 2009)

    Google Scholar 

  28. Wyszecki, G., Stiles, W.S.: Color Science: Concepts and Methods, Quantitative Data and Formulae. Wiley-Interscience, New York (2000)

    Google Scholar 

  29. Xu, K., Li, Y., Ju, T., Hu, S.M., Liu, T.Q.: Efficient affinity-based edit propagation using k-d tree. ACM Trans. Graph. 28, 118:1–118:6 (2009). doi:10.1145/1618452.1618464. http://doi.acm.org/10.1145/1618452.1618464

    Google Scholar 

  30. Xu, K., Wang, J., Tong, X., Hu, S.M., Guo, B.: Edit propagation on bidirectional texture functions. Comput. Graph. Forum 28(7), 1871–1877 (2009)

    Article  Google Scholar 

  31. Yamaguchi, M., Haneishi, H., Fukuda, H., Kishimoto, J., Kanazawa, H., Tsuchida, M., Iwama, R., Ohyama, N.: High-fidelity video and still-image communication based on spectral information: natural vision system and its applications. In: SPIE/IS&T Electr. Imaging, vol. 6062 (2006)

    Google Scholar 

  32. Yasuma, F., Mitsunaga, T., Iso, D., Nayar, S.: Generalized assorted pixel camera: post-capture control of resolution, dynamic range and spectrum. Tech. rep. (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxiang Lan.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(AVI 20.0 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lan, Y., Wang, J., Lin, S. et al. Interactive chromaticity mapping for multispectral images. Vis Comput 29, 773–783 (2013). https://doi.org/10.1007/s00371-013-0829-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0829-x

Keywords

Navigation