Skip to main content
Log in

Stable adaptive algorithm for Six Degrees-of-Freedom haptic rendering in a dynamic environment

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Recently, physically-based simulations with haptics interaction attracted many researchers. In this paper, we propose an adaptive Six Degrees-of-Freedom (6-DOF) haptic rendering algorithm based on virtual coupling, which can automatically adjust virtual coupling parameters according to mass values of the simulated virtual tools. The algorithm can overcome the virtual tool displacement problem caused by the large mass values of the virtual tool and can provide stable force/torque display. The force/torque magnitude is saturated to the maximum force/torque values of the haptic device automatically. The implemented algorithm is tested on the simple and complex standard benchmarks. The experimental results confirm that the proposed adaptive 6-DOF haptic rendering algorithm displays good stability and accuracy for haptic rendering of dynamic virtual objects with mass values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Adams, R.J., Hannaford, B.: A two-port framework for the design of unconditionally stable haptic interfaces. In: Proceeding of 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 1254–1259 (1998)

    Google Scholar 

  2. Andrews, S., Mora, J., Lang, J., Lee, W.S.: Hapticast: a physically-based game with haptic feedback. In: Proceedings of FuturePlay 2006, pp. 1–8 (2006)

    Google Scholar 

  3. Barbic, J., James, D.L.: Six-dof haptic rendering of contact between geometrically complex reduced deformable models. IEEE Trans. Haptics 1(1), 39–52 (2008)

    Article  Google Scholar 

  4. Basdogan, C., Ho, C.H., Srinivasan, M.A.: Virtual environments for medical training: graphical and haptic simulation of laparoscopic common bile duct exploration. IEEE/ASME Trans. Mechatron. 6(3), 269–285 (2001)

    Article  Google Scholar 

  5. Baxter, B., Scheib, V., Lin, M.C., Manocha, D.: Dab: interactive haptic painting with 3D virtual brushes. In: Proceedings of the ACM SIGGRAPH Conference on Computer Graphics, pp. 461–468 (2001)

    Google Scholar 

  6. Bottcher, G., Allerkamp, D., Wolter, F.E.: Multi-rate coupling of physical simulations for haptic interaction with deformable objects. Vis. Comput. 26(6–8), 903–914 (2010)

    Article  Google Scholar 

  7. Colgate, J.E., Stanley, M.C., Brown, J.M.: Issues in the haptic display of tool use. In: Proceedings of the International Conference on Intelligent Robots and Systems, vol. 3, pp. 140–145 (1995)

    Google Scholar 

  8. De Paolis, L.T., Pulimeno, M., Aloisio, G.: An interactive and immersive 3D game simulation provided with force feedback. In: Proceedings of the First International Conference on Advances in Computer-Human Interaction (ACHI’08), Saint Luce, pp. 26–30 (2008)

    Chapter  Google Scholar 

  9. Gregory, A., Mascarenhas, A., Ehmann, S., Lin, M., Manocha, D.: Six degree-of-freedom haptic display of polygonal models. In: Proceedings of the Conference on Visualization’00, pp. 139–146 (2000)

    Google Scholar 

  10. Hamza-Lup, F.G., Stanescu, I.A.: The haptic paradigm in education: challenges and case studies. Internet High. Educ. 13, 78–81 (2010)

    Article  Google Scholar 

  11. Hogan, N.: Impedance control: an approach to manipulation: part I—theory. J. Dyn. Syst. Meas. Control 107, 1–7 (1985)

    Article  MATH  Google Scholar 

  12. Hou, X., Sourina, O.: Stable dynamic algorithm based on virtual coupling for 6-dof haptic rendering. In: Proceedings of 2012 International Conference on Cyberworlds, Germany, pp. 157–164 (2012)

    Chapter  Google Scholar 

  13. Kim, Y.J., Lin, M.C., Manocha, D.: Deep: dual-space expansion for estimating penetration depth between convex polytopes. In: Proceeding of ICRA’02 IEEE International Conference on Robotics and Automation, vol. 1, pp. 921–926 (2002)

    Google Scholar 

  14. Kim, Y.J., Otaduy, M.A., Lin, M.C., Manocha, D.: Six-degree-of-freedom haptic rendering using incremental and localized computations. Presence, Teleoper. Virtual Environ. 12, 277–295 (2003)

    Article  Google Scholar 

  15. McNeely, W.A., Puterbaugh, K.D., Troy, J.J.: Six degree-of-freedom haptic rendering using voxel sampling. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’99, New York, NY, USA, pp. 401–408 (1999)

    Google Scholar 

  16. McNeely, W., Puterbaugh, K., Troy, J.: Voxel-based 6-dof haptic rendering improvements. Haptics-e 3, 7 (2006)

    Google Scholar 

  17. Nelson, D.D., Johnson, D.E., Cohen, E.: Haptic rendering of surface-to-surface sculpted model interaction. In: Proceedings of the ASME Dynamic Systems and Control Division, vol. 67, pp. 101–108 (1999)

    Google Scholar 

  18. Ortega, M., Redon, S., Coquillart, S.: A six degree-of-freedom god–object method for haptic display of rigid bodies. In: Proceedings of the IEEE Conference on Virtual Reality, Washington, DC, USA, pp. 191–198 (2006)

    Chapter  Google Scholar 

  19. Otaduy Tristan, M.A.: 6-dof haptic rendering using contact levels of detail and haptic textures. Ph.D. thesis (2004)

  20. Otaduy, M.A., Lin, M.C.: Sensation preserving simplification for haptic rendering. In: ACM SIGGRAPH 2003, SIGGRAPH’03, New York, NY, USA, pp. 543–553 (2003)

    Chapter  Google Scholar 

  21. Otaduy, M.A., Lin, M.C.: Stable and responsive six-degree-of-freedom haptic manipulation using implicit integration. In: Proceedings of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, WHC’05, Washington, DC, USA, pp. 247–256 (2005)

    Chapter  Google Scholar 

  22. Otaduy, M., Lin, M.: A modular haptic rendering algorithm for stable and transparent 6-dof manipulation. IEEE Trans. Robot. 22(4), 751–762 (2006)

    Article  Google Scholar 

  23. Otaduy, M.A., Lin, M.C.: High fidelity haptic rendering. In: Synthesis Lectures on Computer Graphics and Animation, vol. 2, pp. 1–110 (2006)

    Google Scholar 

  24. Petersik, A., Pflesser, B., Tiede, U., Hohne, K.H., Leuwer, R.: Realistic haptic interaction in volume sculpting for surgery simulation. In: Proceedings of the 2003 International Conference on Surgery Simulation and Soft Tissue Modeling, IS4TM’03, pp. 194–202 (2003)

    Chapter  Google Scholar 

  25. Ruspini, D.C., Kolarov, K., Khatib, O.: Haptic display of complex graphical environments. In: Proceedings of the 1997 Conference on Computer Graphics, SIGGRAPH, pp. 345–352 (1997)

    Google Scholar 

  26. Salisbury, K., Brock, D., Massie, T., Swarup, N., Zilles, C.: Haptic rendering: programming touch interaction with virtual objects. In: Proceedings of the 1995 Symposium on Interactive 3D Graphics, Monterrey, CA, USA, pp. 123–130 (1995)

    Chapter  Google Scholar 

  27. Salisbury, K., Conti, F., Barbagli, F.: Haptic rendering: introductory concepts. IEEE Comput. Graph. Appl. 24(2), 24–32 (2004)

    Article  Google Scholar 

  28. Smith, R.: Open dynamics engine. http://www.ode.org/

  29. Wan, M., McNeely, W.A.: Quasi-static approximation for 6 degrees-of-freedom haptic rendering. In: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), VIS’03, Washington, DC, USA, pp. 257–262 (2003)

    Google Scholar 

  30. Zilles, C.B., Salisbury, J.K.: Constraint-based god-object method for haptic display. In: Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, Pittsburgh, PA, USA, vol. 3, pp. 146–151 (1995)

    Google Scholar 

  31. Zonta, N., Grimstead, I.J., Avis, N.J., Brancale, A.: Accessible haptic technology for drug design applications. J. Mol. Model. 15(2), 193–196 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the Ministry of Education of Singapore Grant MOE2011-T2-1-006 “Collaborative Haptic Modeling for Orthopaedic Surgery Training in Cyberspace” and by Russian Foundation for Basic Research 12-07-00678-a “Research and development of force interaction of virtual objects in the tasks of biomolecular simulation.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiyuan Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, X., Sourina, O. Stable adaptive algorithm for Six Degrees-of-Freedom haptic rendering in a dynamic environment. Vis Comput 29, 1063–1075 (2013). https://doi.org/10.1007/s00371-013-0838-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0838-9

Keywords

Navigation