Skip to main content

Advertisement

Log in

Structure-aware error-diffusion approach using entropy-constrained threshold modulation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Error diffusion is known as a commonly used digital halftoning technique. We present a novel and efficient error-diffusion algorithm which is capable of preserving appreciable structures and tones with blue-noise property. According to the theoretical analysis of threshold modulation, the extraction of the high-frequency image contents is helpful to preserve human vision-sensitive textures. The pixel intensity’s influence on the structural distortion is observed based on a key statistic phenomenon. This effect leads to the non-uniform conservation of diversiform detail contents. To alleviate this influence, an entropy is introduced to measure the intensity’s impact and adaptively constrain the threshold-modulation strength. Compared with the existing edge-enhancement halftoning, our entropy-based method does not suffer from the failure to detect weak edges or improper emphasis of details. On the other hand, this structural improvement enables the modification of error-diffusion coefficients to eliminate visually harmful tonal artifacts, which results in the seamless integration with the best tone-aware techniques (Ostromoukhov in Proceedings of ACM SIGGRAPH, SIGGRAPH ’01, pp 567–572, 2001, Zhou and Fang in ACM Trans Graph (TOG) 22(3):437–444, 2003). Comparisons with the state-of-the-art structure-preserving error diffusions (Chang et al. in ACM Trans Graph (TOG) 28(5): 162:1–162:8, 2009, Li and Mould in Forum 29(2):273–280, 2010) indicate that our methods can achieve better structural similarity with better tone consistency. Our performance is one order of magnitude faster than (Chang et al. in ACM Trans Graph (TOG) 28(5): 162:1–162:8, 2009, Li and Mould in Forum 29(2): 273–280, 2010) while ensuring higher visual quality on typical images. Due to low computational overhead and high halftone quality, the proposed methods in this paper can be widely applicable in many practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Analoui, M., Allebach, J.P.: Model-based halftoning using direct binary search. In: Proceedings of SPIE, vol. 1666, pp. 96–108 (1992)

  2. Asano, T.: Digital halftoning algorithm based on random space-filling curve. In: IEEE International Conference on Image Processing, vol. 1, pp. 545–548 (1996)

  3. Balian, R.: Entropy, a protean concept. In: Poincaré Seminar 2003, Progress in Mathematical Physics, p. 119 (2004)

  4. Bayer, B.E.: An optimum method for two-level rendition of continuous-tone pictures. In: IEEE International Conference on Communications, pp. 26:11–26:15. IEEE, New York (1973)

  5. Chang, J., Alain, B., Ostromoukhov, V.: Structure-aware error diffusion. ACM Trans. Graph. (TOG) 28(5), 162:1–162:8 (2009)

    Google Scholar 

  6. Eschbach, R., Knox, K.T.: Error-diffusion algorithm with edge enhancement. J. Opt. Soc. Am. A 8(12), 1844–1850 (1991)

    Article  Google Scholar 

  7. Floyd, R.W., Steinberg, L.: An adaptive algorithm for spatial greyscale. Proc. Soc. Inf. Disp. 17(2), 75–77 (1976)

    Google Scholar 

  8. Hwang, B.W., Kang, T.H., Lee, T.S.: Improved edge enhanced error diffusion based on first-order gradient shaping filter. In: IEA/AIE, vol. 3029, pp. 473–482 (2004)

  9. Kapur, J.N., Sahoo, P.K., Wong, A.K.C.: A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 29(3), 273–285 (1985)

    Article  Google Scholar 

  10. Khellaf, A., Beghdadi, A., Dupoisot, H.: Entropic contrast enhancement. IEEE Trans. Med. Imaging 10(4), 589–592 (1991)

    Article  Google Scholar 

  11. Knox, K.T., Eschbach, R.: Threshold modulation in error diffusion. J. Electron. Imaging 2(3), 185–192 (1993)

    Article  Google Scholar 

  12. Kwak, N.J., Ryu, S.P., Ahn, J.H.: Edge-enhanced error diffusion halftoning using human visual properties. In: Proceedings of the 2006 International Conference on Hybrid Information Technology, Vol. 01, ICHIT ’06, pp. 499–504 (2006)

  13. Lee, H.S., Kong, K.K., Hong, K.S.: Laplacian based structure-aware error diffusion. In: Proceedings of the International Conference on Image Processing, pp. 525–528 (2010)

  14. Li, H., Mould, D.: Contrast-aware halftoning. Comput. Graph. Forum 29(2), 273–280 (2010)

    Article  Google Scholar 

  15. Li, X.: Edge-directed error diffusion halftoning. IEEE Signal Process. Lett. 13(11), 688–690 (2006)

    Article  Google Scholar 

  16. Mitsa, T., Parker, K.J.: Digital halftoning technique using a blue-noise mask. J. Opt. Soc. Am. A 9(11), 1920–1929 (1992)

    Article  Google Scholar 

  17. Neuhoff, D.L., Pappas, T.N., Seshadri, N.: One-dimensional least-squares model-based halftoning. Proc. ICASSP 14, 1997 (1997)

    Google Scholar 

  18. Ostromoukhov, V.: A simple and efficient error-diffusion algorithm. In: Proceedings of ACM SIGGRAPH, SIGGRAPH ’01, pp. 567–572 (2001)

  19. Pang, W.M., Qu, Y., Wong, T.T., Cohen-Or, D., Heng, P.A.: Structure-aware halftoning. ACM Trans. Graph. (TOG) 27(3), 89:1–89:8 (2008)

    Google Scholar 

  20. Pun, T.: Entropic thresholding, a new approach. Comput. Graph. Image Process. 16(3), 210–239 (1981)

    Article  Google Scholar 

  21. Ulichney, R.: Digital Halftoning. MIT Press, Cambridge (1987)

  22. Ulichney, R.A.: Dithering with blue noise. Proc. IEEE 76, 56–79 (1988)

    Article  Google Scholar 

  23. Velho, L., Gomes, J.d.M.: Digital halftoning with space filling curves. In: Proceedings of ACM SIGGRAPH, SIGGRAPH ’91, pp. 81–90 (1991)

  24. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  25. Zhang, Y., Webber, R.E.: Space diffusion: an improved parallel halftoning technique using space-filling curves. In: Proceedings of ACM SIGGRAPH, SIGGRAPH ’93, pp. 305–312 (1993)

  26. Zhou, B., Fang, X.: Improving mid-tone quality of variable-coefficient error diffusion using threshold modulation. ACM Trans. Graph. (TOG) 22(3), 437–444 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenting Zheng.

Additional information

This work was supported in part by National Basic Research Program of China (Grant No. 2009CB320803), and 863 Program of China (2012AA12090), NSFC (61232012).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Chen, W., Zheng, W. et al. Structure-aware error-diffusion approach using entropy-constrained threshold modulation. Vis Comput 30, 1145–1156 (2014). https://doi.org/10.1007/s00371-013-0895-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0895-0

Keywords

Navigation