Skip to main content
Log in

Interpolation and parallel adjustment of center-sampled trees with new balancing constraints

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a novel tree balancing constraint that is slightly stronger than the well-known 2-to-1 balancing constraint used in octree data structures (Tu and O’hallaron, Balanced refinement of massive linear octrees. Tech. Rep. CMU-CS-04-129. Carnegie Mellon School of Computer Science, Pennsylvania, 2004). The new balancing produces a limited number of local cell connectivity types (stencils): 5 for a quadtree and 21 for an octree. Using this constraint, we interpolate the data sampled at cell centers using weights pre-computed by interpolation or by generating interpolation codes for each stencil. In addition, we develop a parallel tree adjustment algorithm, and show that the imposed balancing constraint is satisfied even when the tree is adjusted in parallel. We also show that the adjustment has high parallelization performance. We finally apply the new balancing scheme to level set image segmentation and smoke simulation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Whereas the term “node” means a corner of a cell in the previous paper [16], we use the term as a tree node in a quadtree/octree structure. In addition, the term is equivalent to “cell” in our cell-centered tree.

References

  1. Adalsteinsson, D., Sethian, J.: Fast level set method for propagating interfaces. J. Comput. Phys. 118, 269–277 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bai, Y., Han, X., Prince, J.L.: Octree grid topology preserving geometric deformable model for three-dimensional medical image segmentation. In: Information Processing in Medical Imaging (IPMI 2007), pp. 20:556–68 (2007)

  3. Benson, D., Davis, J.: Octree textures. ACM Transactions on Graphics. In: Proc. of SIGGRAPH, 21, pp. 785–790 (2002)

  4. Brox, T., Weickert, J.: Level set segmentation with multiple regions. IEEE Trans. Image Process. 15(10), 3213–3218 (2006)

    Article  Google Scholar 

  5. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: International Conference of Computer Vision (ICCV), pp. 694–699 (1995)

  6. Chan, T.F., Sandberg, B.Y., Vese, L.A.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11(2), 130–141 (2000)

    Article  Google Scholar 

  7. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (1999)

    Article  Google Scholar 

  8. Chen, H., Min, C.H., Gibou, F.: A supra-convergent finite difference scheme for the poisson and heat equations on irregular domains and non-graded adaptive cartesian grids. J. Sci. Comput. 31, 19–60 (2007)

  9. Cremers, D.: A variational framework for image segmentation combining motion estimation and shape regularization. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 53–58 (2003)

  10. DeBry, D., Gibbs, J., Petty, D.D., Robins, N.: Painting and rendering textures on unparameterized models. ACM Transactions on Graphics. In: Proc. of SIGGRAPH, 21, pp. 763–768 (2002)

  11. Foster, N., Fedkiw, R.: Practical animation of liquids. In: ACM SIGGRAPH, pp. 15–22 (2001)

  12. Frisken, S.F., Perry, R.N., Rockwood, A.P., Jones, T.R.: Adaptively sampled distance fields: a general representation of shape for computer graphics. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’00, pp. 249–254. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (2000). doi:10.1145/344779.344899

  13. Gibou, F., Min, C.H., Ceniceros, H.: Finite difference schemes for incompressible flows on non-graded adaptive cartesian grids. Fluid Dyn. Mater. Process. 154, 199–208 (2007)

    MathSciNet  Google Scholar 

  14. Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring of hermite data. ACM Transactions on Graphics. In: Proc. of SIGGRAPH, 21(3), pp. 339–346 (2002)

  15. Kim, B., Tsiotras, P.: Image segmentation on cell-center sampled quadtree and octree grids. In: Proceedings of SPIE Electronic Imaging / Wavelet Applications in Industrial Processing VI, pp. 265–278 (2009)

  16. Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. In: ACM SIGGRAPH, pp. 457–462 (2004)

  17. Malladi, R., Sethian, J.A., Vemuri, B.C.: Evolutionary fronts for topology-independent shape modeling and recovery. In: Proceedings of the third European conference on Computer vision, pp. 1–13 (1994)

  18. Milne, B.: Adaptive Level Set Methods Interfaces. PhD thesis, Dept. of Mathematics, University of California, Berkeley, CA (1995)

  19. Min, C.H., Gibou, F.: A second order accurate projection method for the incompressible navier-stokes equations on fully adaptive grids. J. Comput. Phys. 219, 912–929 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Min, C.H., Gibou, F.: A second order accurate level set method on non-graded adaptive grids. J. Comput. Phys. 225, 300–321 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Min, C.H., Gibou, F., Ceniceros, H.: A supra-convergent finite difference scheme for the variable coefficient poisson equation on fully adaptive grids. J. Comput. Phys. 202, 577–601 (2006)

    MathSciNet  Google Scholar 

  22. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  23. Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin. ISBN 0-387-95482-1 (2002)

  24. Parashar, M., Browne, J.C.: Distributed dynamic data-structures for parallel adaptive mesh-refinement. In: Proceedings of the international conference for high performance computing (1995)

  25. Plewa, T., Linde, T., Weirs (Editors), V.G.: Adaptive Mesh Refinement - Theory and Applications. In: Proceedings of the Chicago Workshop on Adaptive Mesh Refinement Methods, Sept. 3–5, 2003. Lecture Notes in Computational Science and Engineering, Vol. 41. Springer, Berlin (2003)

  26. Sagan, H.: Space-Filling Curves. Springer, Berlin (1994)

  27. Schaefer, S., Warren, J.: Dual marching cubes: primal contouring of dual grids. In: Proceedings of Pacific Graphics, pp. 70–76 (2004)

  28. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge. ISBN 0-521-64557-3 (1999)

  29. Stam, J.: Stable fluids. In: ACM SIGGRAPH, pp. 121–128 (1999)

  30. Strain, J.: Fast tree-based redistancing for level set computations. J. Comput. Phys. 152(2), 648–666 (1999)

    Article  MathSciNet  Google Scholar 

  31. Tu, T., O’hallaron, D.R.: Balanced refinement of massive linear octrees. Tech. Rep. CMU-CS-04-129, Carnegie Mellon School of Computer Science, Pennsylvania (2004)

  32. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the mumford and shah model. IEEE Trans. Image Process. 50(3), 271–293 (2002)

    MATH  Google Scholar 

  33. Westermann, R., Kobbelt, L., Ertl, T.: Real-time exploration of regular volume data by adaptive reconstruction of isosurfaces. Vis. Comput. 15(2), 100–111 (1999)

    Article  Google Scholar 

  34. Wilhelms, J., Gelder, A.V.: Octrees for faster isosurface generation. ACM Trans. Graph. 11(3), 201–227 (1991)

    Article  Google Scholar 

  35. Yerry, M.A., Shephard, M.S.: Automatic three-dimensional mesh generation by the modified-octree technique. Int. J. Numer. Methods Eng. 20(11), 1965–1990 (1984)

    Article  MATH  Google Scholar 

  36. Zhou, K., Gong, M., Huang, X., Guo, B.: Data-parallel octrees for surface reconstruction. IEEE Trans. Vis. Comput. Graph. 177(5), 681–699 (2011)

    Google Scholar 

Download references

Acknowledgments

The second author was supported by the US National Science Foundation, award CMMI-0856565. The third author was supported by National Research Foundation of Korea (NRF) (Grant NRF-2011-0023134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oh-young Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mov 1975 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B., Tsiotras, P., Hong, JM. et al. Interpolation and parallel adjustment of center-sampled trees with new balancing constraints. Vis Comput 31, 1351–1363 (2015). https://doi.org/10.1007/s00371-014-1018-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-014-1018-2

Keywords

Navigation