Skip to main content
Log in

Differential geometric methods for examining the dynamics of slow-fast vector fields

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this work we present computational methods for examining dynamical systems. We focus on those systems being characterized by slow–fast vector fields or corresponding differential algebraic equations that commonly occur in physical applications. In the latter ones scientists usually consider a manifold of admissible physical states and a vector field describing the time evolution of the physical system. The manifold is typically implicitly defined within a higher-dimensional space by a system of equations. Certain physical systems, such as relaxation oscillators, perform sudden jumps in their state evolution when they are forced into an unstable state. The main contribution of the present work is to model the dynamical evolution incorporating the jumping behavior from a perspective of computational geometry which not only provides a qualitative analysis but also produces quantitative results. We use geodesic polar coordinates (GPC) to numerically obtain explicit parametrizations of the implicitly defined manifold and of the relevant jump and hit sets. Moreover, to deal with the possibly high co-dimension of the considered implicitly defined manifold we sketch how GPC in combination with the cut locus concept can be used to numerically obtain an essentially injective global parametrization. This allows us to parametrize and visualize the dynamical evolution of the system including the aforementioned jump phenomena. As main tools we use homotopy approaches in conjunction with concepts from differential geometry. We discuss how to numerically realize and how to apply them to several examples from mechanics, electrical engineering and biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. Note that contrary to other common uses of the term algebraic, in this context \(f\) and \(g\) are not required to be polynomial functions.

References

  1. Allgower, E.L., Georg, K.: Introduction to numerical continuation methods. Classics in applied mathematics. SIAM (2003). doi:10.1137/1.9780898719154.

  2. Dey, T.K., Li, K.: Cut locus and topology from surface point data. Proceedings of the Twenty-fifth Annual Symposium on Computational Geometry. SCG ’09, pp. 125–134. ACM, New York (2009)

  3. do Carmo, M.P.: Riemannian Geometry. Birkhauser, Boston (1992).

  4. Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. J. SIAM Numer. Anal. Ser. B 2, 205–224 (1965)

    MATH  MathSciNet  Google Scholar 

  5. Guckenheimer, J., Haiduc, R.: Canards at folded nodes. Mosc. Math. J. 5(1), 91–103 (2005)

    MATH  MathSciNet  Google Scholar 

  6. Guckenheimer, J., Hoffman, K., Weckesser, W.: Numerical computation of canards. Int. J. Bifurc. Chaos 10(12), 2669–2687 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Guckenheimer, J., Hoffman, K., Weckesser, W.: Global analysis of periodic orbits in the forced van der Pol equation. In: Broer H.W., Krauskopf B., Vegter G. (eds.) Global Analysis of Dynamical Systems-Festschrift Dedicated to Floris Takens for his 60th Birthday, pp. 261–276. IOP Press (2003)

  8. Guillemin, V., Pollack, A.: Differential Topology, vol. 370. American Mathematical Society. (Englewood Cliffs, N.J.: Prentice-Hall, 1974) (2010)

  9. Gutschke, M.: Untersuchungen zur Berechnung kürzester Verbindungswege auf gekrümmten Flächen. Diploma thesis, Welfenlab, Leibniz Universität Hannover (2004).

  10. Gutschke, M., Vais, A., Wolter, F.-E.: A geometrical framework to capture the dynamical evolution of slow-fast vector fields. In: Proceedings NASAGEM Workshop-Computer Graphics International (2013). http://welfenlab.de/fileadmin/gutschke2013.pdf. Accessed 11 June 2013

  11. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  12. Hodgkin, A.L., Huxley, A.F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116, 449–472 (1952)

    Article  Google Scholar 

  13. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems, vol. 54. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  14. Mathis, W., Blanke, P., Gutschke, M., Wolter, F.-E.: Nonlinear electric circuit analysis from a differential geometric point of view. ITG-Fachbericht-ISTET 2009, 30167 (2009)

    Google Scholar 

  15. Memoli, F., Sapiro, G., Osher, S.: Solving variational problems and partial differential equations mapping into general target manifolds. J. Comput. Phys. 195, 263–292 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nass, H.: Medial axis on Riemannian manifolds. Ph.D. thesis, Leibniz Universitaet Hannover (2007).

  17. Nass, H., Wolter, F.-E., Dogan, C., Thielhelm, H.: Computation of geodesic voronoi diagrams in 3-space using medial equations. In: Proceedings of NASAGEM, 26 Oct 2007 (2007).

  18. Nass, H., Wolter, F.-E., Thielhelm, H., Dogan, C.: Medial axis inverse transform in 3-dimensional riemannian complete manifolds. In: Proceedings of NASAGEM, Hannover, 26 Oct 2007 (2007).

  19. Poincaré, H.: Sur les Lignes Géodésiques des Surfaces Convexes. Trans. Am. Math. Soc. 6, 237–274 (1905)

    Article  MATH  Google Scholar 

  20. Rausch, T.: Untersuchungen und Berechnungen zur Medialen Achse bei berandeten FlaechenstĂĽcken. Ph.D. thesis, Universitaet Hannover (1999).

  21. Rausch, T., Wolter, F.-E., Sniehotta, O.: Computation of medial curves on surfaces. Math. Surf. 7, 43–68 (1997)

    MathSciNet  Google Scholar 

  22. Sinclair, R., Tanaka, M.: Loki: software for computing cut loci. Exp. Math. 11(1), 1–25 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Steward, I., Woodcock, A.E.R.: On Zeeman’s equations for the nerve impulse. Bull. Math. Biol. 43, 279–325 (1981)

    Article  MathSciNet  Google Scholar 

  24. Tchizawa, K.: An analysis of nonlinear systems with respect to jump. Yokohama Math. J. 32, 203–214 (1984)

    MATH  MathSciNet  Google Scholar 

  25. Thielhelm, H., Vais, A., Brandes, D., Wolter, F.-E.: Connecting geodesics on smooth surfaces. Vis. Comput. 28(6–8), 529–539 (2012)

    Article  Google Scholar 

  26. Thiessen, T.: Mathis: geometric dynamics of nonlinear circuits and jump effects. Int. J. Comput. Math. Electr. Electron. Eng. 30(4), 1307–1318 (2011)

    Article  Google Scholar 

  27. Thiessen, T., Gutschke, M., Blanke, P., Mathis, W., Wolter, F.-E.: Numerical analysis of relaxation oscillators based on a differential geometric approach. In: International Conference on Signals and Electronic Systems, pp. 209–212 (2010).

  28. Thiessen, T., Gutschke, M., Blanke, P., Mathis, W., Wolter, F.-E.: A numerical approach for nonlinear dynamical circuits with jumps. In: European Conference on Circuit Theory and Design (2011).

  29. Thiessen, T., Gutschke, M., Blanke, P., Mathis, W., Wolter, F.-E.: Differential geometric methods for jump effects in nonlinear circuits. In: 20th Edition of the Nonlinear Dynamics of Electronic Systems (2012).

  30. Thom, R.: Structural Stability and Morphogenesis. W.A. Benjamin, inc., Advanced Book Program, Reading (1975)

    MATH  Google Scholar 

  31. Wolter, F.-E.: Distance function and cut loci on a complete Riemannian manifold. Arch. Math. 1(32), 92–96 (1979)

    Article  MathSciNet  Google Scholar 

  32. Wolter, F.-E.: Cut loci in bordered and unbordered Riemannian manifolds. Ph.D. thesis, TU Berlin (1985).

  33. Wolter, F.-E.: Cut locus and medial axis in global shape interrogation and representation. MIT Design Laboratory Memorandum 92–2 and MIT National Sea Grant Library Report. MIT, Dec 1993 (1992) (revised version).

  34. Wolter, F.-E., Tuohy, S.T.: Approximation of high-degree and procedural curves. Eng. Comput. 8(2), 61–80 (1992)

    Article  MATH  Google Scholar 

  35. Wolter, F.-E., Tuohy, S.T.: Curvature computations for degenerate surface patches. Comput. Aided Geom. Des. 9(4), 241–270 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wolter, F.-E., Blanke, P., Thielhelm, H., Vais, A.: Computational differential geometry contributions of the welfenlab to grk 615. In: Modelling, Simulation and Software Concepts for Scientific-Technological Problems, vol. 57, pp. 211–235. Springer (2011).

  37. Zangwill, W.I., Garcia, C.B.: Pathways to solutions, fixed points, and equilibria. Prentice-Hall, Englewood Cliffs (1981)

    MATH  Google Scholar 

  38. Zeeman, E.C.: Catastrophe Theory: Selected Papers, 1972–1977. Addison-Wesley, Reading (2000).

Download references

Acknowledgments

The research in this article was partially supported by the German Research Foundation (DFG), Project ”Differentialgeometrische Methoden zur Analyse nichtlinearer elektronischer Schaltungen und deren Visualisierung”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Gutschke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutschke, M., Vais, A. & Wolter, FE. Differential geometric methods for examining the dynamics of slow-fast vector fields. Vis Comput 31, 169–186 (2015). https://doi.org/10.1007/s00371-014-1036-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-014-1036-0

Keywords

Navigation