Skip to main content
Log in

Learning best views of 3D shapes from sketch contour

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we introduce a novel learning-based approach to automatically select the best views of 3D shapes using a new prior. We think that a viewpoint of the 3D shape is reasonable if a human usually draws the shape from it. Hand-drawn sketches collected from relevant datasets are used to model this concept. We reveal the connection between sketches and viewpoints by taking context information of their contours into account. Furthermore, a learning framework is proposed to generalize this connection which aims to learn an automatic best view selector for different kinds of 3D shapes. Experiments on the Princeton Shape Benchmark dataset are conducted to demonstrate the superiority of our approach. The results show that compared with other state-of-the-art methods, our approach is not only robust but also efficient when applied to shape retrieval tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. In this paper, we use “contour map” to refer either to an input sketch or to a view map generated from the viewpoint of 3D shapes.

References

  1. Bay, H., Tuytelaars, T., Gool, L.: Surf: speeded up robust features. In: European Conference on Computer Vision (ECCV) (2006)

  2. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell 24(5), 603–619 (2002)

    Article  Google Scholar 

  3. DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., Santella, A.: Suggestive contours for conveying shape. In: SIGGRAPH, pp. 848–855 (2003)

  4. Eitz, M., Richter, R., Boubekeur, T., Hildebrand, K., Alexa, M.: Sketch-based shape retrieval. ACM Trans. Graph. (Proc. SIGGRAPH) 31(4), 31:1–31:10 (2012)

    Google Scholar 

  5. Endres, I., Hoiem, D.: Category-independent object proposals with diverse ranking. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 222–234 (2014)

    Article  Google Scholar 

  6. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

    MATH  Google Scholar 

  7. Feldman, J.A., Feldman, C.M., Falk, G., Grape, C., Pearlman, J., Sobel, I., Tenenbaum, J.M.: The stanford hand-eye project. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 521–526 (1969)

  8. Fisher, M., Hanrahan, P.: Context-based search for 3D models. ACM Trans. Graph. 29(6), 182 (2010)

    Article  Google Scholar 

  9. Giorgi, D., Mortara, M., Spagnuolo, M.: 3D shape retrieval based on best view selection. In: ACM workshop on 3D object retrieval (2010)

  10. Laga, H.: Data-driven approach for automatic orientation of 3D shapes. Vis. Comput. 27(11), 977–989 (2011)

    Article  Google Scholar 

  11. Laga, H., Mortara, M., Spagnuolo, M.: Geometry and context for semantic correspondences and functionality recognition in manmade 3D shapes. ACM Trans. Graph. 32(5), 150-1–150-16 (2013)

  12. Laga, H., Nakajima, M.: Supervised learning of salient 2D views of 3D models. J. Soc. Art Sci. 7(4), 124–131 (2008)

    Article  Google Scholar 

  13. Lee, C.H., Varshney, A., Jacobs, D.: Mesh Saliency. In: SIGGRAPH (2005)

  14. Li, B., Lu, Y., Godil, A., et al.: SHREC’13 track: large scale sketch-based 3D shape retrieval. In: Eurographics Workshop on 3D Object Retrieval (3DOR), pp. 89–96 (2013)

  15. Li, B., Lua, Y., Li, C., et al.: A comparison of 3D shape retrieval methods based on a large-scale benchmark supporting multimodal queries. Comput. Vis. Image Underst. 131, 1–27 (2015)

    Article  Google Scholar 

  16. Liang, S., Zhao, L., Wei, Y., Jia, J.: Sketch-based retrieval using content-aware hashing. In: Pacific-Rim Conference on Multimedia (PCM), pp. 133–142 (2014)

  17. Liu, H., Zhang, L., Huang, H.: Web-image driven best views of 3D shapes. Vis. Comput. 28(3), 279–287 (2012)

    Article  MathSciNet  Google Scholar 

  18. Liu, Y.J., Luo, X., Joneja, A., Ma, C.X., Fu, X.L., Song, D.: User-adaptive sketch-based 3-D CAD model retrieval. IEEE Trans. Autom. Sci. Eng. 10(3), 783–795 (2013)

    Article  Google Scholar 

  19. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 42(3), 145–175 (2001)

    Article  Google Scholar 

  20. Ma, C., Yang, X., Zhang, C., Ruan, X., Yang, M.H.: Sketch retrieval via dense stroke features. In: British Machine Vision Conference (BMVC) (2013)

  21. Malisiewicz, T., Efros, A.A.: Beyond categories: the visual memex model for reasoning about object relationships. In: Annual Conference on Neural Information Processing Systems (NIPS) (2009)

  22. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004)

    Article  Google Scholar 

  23. Page, D., Koschan, A., Sukumar, S., Roui-Abidi, B., Abidi, M.: Shape analysis algorithm based on information theory. In: International Conference on Image Processing (ICIP) (2003)

  24. Park, H.S., Jun, C.H.: A simple and fast algorithm for K-medoids clustering. Expert Syst. Appl. 36(2), 3336–3341 (2009)

    Article  Google Scholar 

  25. Shao, T., Xu, W., Yin, K., Wang, J., Zhou, K., Guo, B.: Discriminative sketch-based 3D model retrieval via robust shape matching. In: Pacific Graphics (PG) (2011)

  26. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton Shape Benchmark. In: Shape Modeling International (SMI) (2004)

  27. Shtrom, E., Leifman, G., Tal, A.: Saliency detection in large point sets. In: International Conference on Computer Vision (ICCV) (2013)

  28. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: International Conference on Computer Vision (ICCV), pp. 1470–1477 (2003)

  29. Vázquez, P.P., Feixas, M., Sbert, M., Heidrich, W.: Viewpoint selection using viewpoint entropy. In: 6th International Fall Workshop Vision, Modeling and Visualization (2001)

  30. Wang, F., Lin, L., Tang, M.: A new sketch-based 3D model retrieval approach by using global and local features. Graph. Models 76(3), 128–139 (2014)

    Article  Google Scholar 

  31. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984)

    Article  Google Scholar 

  32. Zhao, S., Ooi, W.T., Carlier, A., Morin, G., Charvillat, V.: Bandwidth adaptation for 3D mesh preview streaming. ACM Trans. Multimed. Comput. Commun. Appl. 10(1), 13-1–13-20 (2014)

  33. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: European Conference on Computer Vision (ECCV) (2014)

Download references

Acknowledgments

This research work was supported by the National Science Foundation of China (No. 61272276, 61305091), the National Twelfth Five-Year Plan Major Science and Technology Project of China (No. 2012BAC11B01-04-03), Special Research Fund of Higher Colleges Doctorate (No. 20130072110035), the Fundamental Research Funds for the Central Universities (No. 2100219038), and Shanghai Pujiang Program (No. 13PJ1408200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Liang, S., Jia, J. et al. Learning best views of 3D shapes from sketch contour. Vis Comput 31, 765–774 (2015). https://doi.org/10.1007/s00371-015-1091-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1091-1

Keywords

Navigation