Skip to main content
Log in

A novel spatial–temporal optical flow method for estimating the velocity fields of a fluid sequence

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel optical flow method to estimate the velocity fields of fluid sequences based on spatial–temporal physical principles. Our novel optical flow model mainly takes scalar field correspondence, velocity field temporal coherence and incompressibility into consideration. And the velocity field smoothness assumption is also used for better convergence. Compared with existing methods which only estimate the velocity field between a single pair of frames, our novel optical flow model can deal with the fields of all frames of the sequence simultaneously. For some frames of the sequence, the image quality is higher and more accurate velocity fields can be obtained, but for other frames, the estimated fields may be rather far from the groundtruth due to the lack of information. And our model can propagate the correspondence information from the accurate frames to neighbor frames and help the optimization converge to a better result. Also, several sophisticated optimization techniques are employed to solve our novel model efficiently and robustly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ihrke, I., Magnor, M.: Image-based tomographic reconstruction of flames. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’04, pp. 365–373 (2004)

  2. Hawkins, T., Einarsson, P., Debevec, P.: Acquisition of time-varying participating media. ACM Trans. Graph. 24(3), 812–815 (2005)

    Article  Google Scholar 

  3. Hu, Y., Yue, Q., Xin, T.: Image-based modeling of inhomogeneous single-scattering participating media. Sci. China Inform. Sci. 53(6), 1141–1150 (2010)

    Article  MathSciNet  Google Scholar 

  4. Wang, H., Liao, M., Zhang, Q., Yang, R., Turk, G.: Physically guided liquid surface modeling from videos. ACM Trans. Graph 28(3), 90:1–90:11 (2009)

    Google Scholar 

  5. Gregson, J., Krimerman, M., Hullin, M.B., Heidrich, W.: Stochastic tomography and its applications in 3d imaging of mixing fluids. ACM Trans. Gr. 31(4), 7

  6. Bhat, K.S., Seitz, S.M., Hodgins, J.K., Khosla, P.K.: Flow-based video synthesis and editing. ACM Trans. Graph. 23(3), 360–363 (2004)

    Article  Google Scholar 

  7. Pighin, F., Cohen, J.M., Shah, M.: Modeling and editing flows using advected radial basis functions. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’04, pp. 223–232, Aire-la-Ville, Switzerland, Switzerland, 2004. Eurographics Association

  8. Okabe, M., Anjyor, K., Onai, R.: Creating fluid animation from a single image using video database. Comput. Gr. Forum 30(7), 1973–1982 (2011)

    Article  Google Scholar 

  9. Gregson, J., Ihrke, I., Thuerey, N., Heidrich, W.: From capture to simulation—connecting forward and inverse problems in fluids. ACM Trans. Gr. 33 (2014)

  10. Ke, Y., Sukthankar, R.: Pca-sift: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 2, pp. II–506–II–513, June 2004

  11. Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)

  12. The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst. 63(1), 75–104 (1996)

  13. Memin, E., Perez, P.: A multigrid approach for hierarchical motion estimation. In: Sixth International Conference on Computer Vision, pp. 933–938, Jan 1998

  14. Gupta, S.N., Prince, J.L.: Stochastic models for div-curl optical flow methods. IEEE Signal Process. Lett. 3(2), 32–34 (1996)

    Article  Google Scholar 

  15. Corpetti, T., Memin, E., Perez, P.: Dense estimation of fluid flows. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 365–380 (2002)

    Article  MATH  Google Scholar 

  16. Ruhnau, P., Stahl, A., Schnörr, C.: Variational estimation of experimental fluid flows with physics-based spatio-temporal regularization. Meas. Sci. Technol. 18(3), 755 (2007)

    Article  Google Scholar 

  17. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. Computer Vision—ECCV 2004, volume 3024 of Lecture Notes in Computer Science, pp. 25–36. Springer, Berlin (2004)

  18. Sun, D., Roth, S., Black, M.J. Secrets of optical flow estimation and their principles. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2432–2439, June 2010

  19. Volz, S., Bruhn, A., Valgaerts, L., Zimmer, H.: Modeling temporal coherence for optical flow. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1116–1123 (2011)

  20. Keane, R.D., Adrian, R.J.: Optimization of particle image velocimeters. I. Double pulsed systems. Meas. Sci. Technol. 1(11), 1202 (1990)

    Article  Google Scholar 

  21. Keane, R.D., Adrian, R.J.: Theory of cross-correlation analysis of piv images. Appl. Sci. Res. 49(3), 191–215 (1992)

  22. Corpetti, T., Mmin, T., Prez, P.: Estimating fluid optical flow. In: Proc. International Conf. on Pattern Recognition, pp. 1045–1048 (2000)

  23. Corpetti, T., Heitz, D., Arroyo, G., Mémin, E., Santa-Cruz, A.: Fluid experimental flow estimation based on an optical-flow scheme. Exp. Fluids 40(1), 80–97 (2006)

    Article  Google Scholar 

  24. Yuan, J., Schnörr, C., Mémin, E.: Discrete orthogonal decomposition and variational fluid flow estimation. J. Math. Imaging Vis. 28(1), 67–80 (2007)

    Article  MathSciNet  Google Scholar 

  25. Herlin, I., Béréziat, D., Mercier, N., Zhuk, S.: Divergence-free motion estimation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision—ECCV 2012, Volume 7575 of Lecture Notes in Computer Science, pp. 15–27. Springer, Berlin (2012)

    Google Scholar 

  26. Kadri-Harouna, S., Dèrian, P., Hèas, P., Mèmin, E.: Divergence-free wavelets and high order regularization. Int. J. Comput. Vis. 103(1), 80–99 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ruhnau, P., Schnörr, C.: Optical stokes flow estimation: an imaging-based control approach. Exp. Fluids 42(1), 61–78 (2007)

    Article  Google Scholar 

  28. Heitz, D., Héas, P., Mémin, E., Carlier, J.: Dynamic consistent correlation-variational approach for robust optical flow estimation. Exp. Fluids 45(4), 595–608 (2008)

    Article  Google Scholar 

  29. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 123–231 (2013)

    Google Scholar 

  30. Stam, J.: Stable fluids. In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp. 121–128. ACM Press/Addison-Wesley Publishing Co. (1999)

  31. Fedkiw, R., Stam, J., Jensen, H.W.: Visual simulation of smoke. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01, pp. 15–22, New York, NY, USA, 2001. ACM

  32. Nvidia cuda home page. http://www.nvidia.com/object/cuda_home_new.html

  33. Konstantinidis, E., Cotronis, Y.: Accelerating the red/black sor method using gpus with cuda. Parallel Processing and Applied Mathematics. volume 7203 of Lecture Notes in Computer Science, pp. 589–598. Springer, Berlin (2012)

Download references

Acknowledgments

This paper was supported by the National Key Technology Research and Development Program of China (No. 2014BAK18B01), National Natural Science Foundation of China (Nos. 61272348, 61202235), Ph.D. Program Foundation of Ministry of Education of China (No. 20111102110018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Zuo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 25380 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, Q., Qi, Y. A novel spatial–temporal optical flow method for estimating the velocity fields of a fluid sequence. Vis Comput 33, 293–302 (2017). https://doi.org/10.1007/s00371-015-1195-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1195-7

Keywords

Navigation