Skip to main content
Log in

GeoBrick: exploration of spatiotemporal data

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present GeoBrick, an interactive technique for exploring spatiotemporal data. In GeoBrick, each region is comprised of multivariate data, which is encoded into simple shapes with colors. Additionally, users can adjust the resolution of data values to get an overview as well as details of the data. GeoBrick allows users to (1) juxtapose data and spatial profiles of discontiguous regions, (2) identify temporal patterns of user-defined classes of regions, and (3) comparatively evaluate across distinct configurations of regions. We demonstrate the effectiveness and efficacy of GeoBrick using two case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Andrienko, G., Andrienko, N., Bremm, S., Schreck, T., Von Landesberger, T., Bak, P., Keim, D.: Space-in-time and time-in-space self-organizing maps for exploring spatiotemporal patterns. Comput. Graph. Forum 29(3), 913–922 (2010)

    Article  Google Scholar 

  2. Andrienko, G., Andrienko, N., Demsar, U., Dransch, D., Dykes, J., Fabrikant, S.I., Jern, M., Kraak, M.J., Schumann, H., Tominski, C.: Space, time and visual analytics. Int. J. Geogr. Inf. Sci. 24(10), 1577–1600 (2010)

    Article  Google Scholar 

  3. Andrienko, G., Andrienko, N., Fuchs, G., Wood, J.: Revealing patterns and trends of mass mobility through spatial and temporal abstraction of origin-destination movement data. IEEE Trans. Vis. Comput. Graph. 23(9), 2120–2136 (2017)

    Article  Google Scholar 

  4. Andrienko, G.L., Andrienko, N.V.: Interactive maps for visual data exploration. Int. J. Geogr. Inf. Sci. 13(4), 355–374 (1999)

    Article  Google Scholar 

  5. Buschmann, S., Trapp, M., Döllner, J.: Animated visualization of spatial-temporal trajectory data for air-traffic analysis. Vis. Comput. 32(3), 371–381 (2016)

    Article  Google Scholar 

  6. Cibulski, L., Gračanin, D., Diehl, A., Splechtna, R., Elshehaly, M., Delrieux, C., Matković, K.: ITEA—interactive trajectories and events analysis: exploring sequences of spatio-temporal events in movement data. Vis. Comput. 32(6), 847–857 (2016)

    Article  Google Scholar 

  7. Claessen, J.H.T., van Wijk, J.J.: Flexible linked axes for multivariate data visualization. IEEE Trans. Vis. Comput. Graph. 17(12), 2310–2316 (2011)

    Article  Google Scholar 

  8. Dorling, D.: Area Cartograms: Their Use and Creation. University of East Anglia, Environmental Publications, Norwich (1996)

    Google Scholar 

  9. Eppstein, D., van Kreveld, M., Speckmann, B., Staals, F.: Improved grid map layout by point set matching. In: IEEE Symposium on Pacific Visualization, pp. 25–32 (2013)

  10. Fuchs, J., Isenberg, P., Bezerianos, A., Fischer, F., Bertini, E.: The influence of contour on similarity perception of star glyphs. IEEE Trans. Vis. Comput. Graph. 20(12), 2251–2260 (2014)

    Article  Google Scholar 

  11. Goodwin, S., Dykes, J., Slingsby, A., Turkay, C.: Visualizing multiple variables across scale and geography. IEEE Trans. Vis. Comput. Graph. 22(1), 599–608 (2016)

    Article  Google Scholar 

  12. Gratzl, S., Gehlenborg, N., Lex, A., Pfister, H., Streit, M.: Domino: extracting, comparing, and manipulating subsets across multiple tabular datasets. IEEE Trans. Vis. Comput. Graph. 20(12), 2023–2032 (2014)

    Article  Google Scholar 

  13. Gratzl, S., Lex, A., Gehlenborg, N., Pfister, H., Streit, M.: LineUp: visual analysis of multi-attribute rankings. IEEE Trans. Vis. Comput. Graph. 19(12), 2277–2286 (2013)

    Article  Google Scholar 

  14. Guo, D., Chen, J., MacEachren, A.M., Liao, K.: A visualization system for space-time and multivariate patterns (VIS-STAMP). IEEE Trans. Vis. Comput. Graph. 12(6), 1461–1474 (2006)

    Article  Google Scholar 

  15. Harrower, M., Brewer, C.A.: Colorbrewer.org: an online tool for selecting colour schemes for maps. Cartogr. J. 40(1), 27–37 (2003)

    Article  Google Scholar 

  16. Hoeber, O., Wilson, G., Harding, S., Enguehard, R., Devillers, R.: Exploring geo-temporal differences using GTdiff. In: IEEE Symposium on Pacific Visualization, pp. 139–146 (2011)

  17. Im, J.F., McGuffin, M.J., Leung, R.: GPLOM: the generalized plot matrix for visualizing multidimensional multivariate data. IEEE Trans. Vis. Comput. Graph. 19(12), 2606–2614 (2013)

    Article  Google Scholar 

  18. Jern, M., Franzen, J.: “GeoAnalytics”: exploring spatio-temporal and multivariate data. In: Proceedings of the Tenth International Conference on Information Visualisation, pp. 25–31 (2006)

  19. Kehrer, J., Piringer, H., Berger, W., Groller, M.E.: A model for structure-based comparison of many categories in small-multiple displays. IEEE Trans. Vis. Comput. Graph. 19(12), 2287–2296 (2013)

    Article  Google Scholar 

  20. von Landesberger, T., Brodkorb, F., Roskosch, P., Andrienko, N., Andrienko, G., Kerren, A.: Mobilitygraphs: visual analysis of mass mobility dynamics via spatio-temporal graphs and clustering. IEEE Trans. Vis. Comput. Graph. 22(1), 11–20 (2016)

    Article  Google Scholar 

  21. Liu, X., Hu, Y., North, S., Shen, H.W.: Correlatedmultiples: spatially coherent small multiples with constrained multi-dimensional scaling. In: Computer Graphics Forum (2015)

  22. Meulemans, W., Dykes, J., Slingsby, A., Turkay, C., Wood, J.: Small multiples with gaps. IEEE Trans. Vis. Comput. Graph. 23(1), 381–390 (2017)

    Article  Google Scholar 

  23. National Center For Health Statistics. http://www.cdc.gov/nchs/ Accessed Jan 2015

  24. OECD data. https://data.oecd.org/. Accessed Nov 2017

  25. Papadopoulos, C., Petkov, K., Kaufman, A., Mueller, K.: The Reality Deck—an immersive gigapixel display. IEEE Comput. Graph. Appl. 35(1), 33–45 (2015)

    Article  Google Scholar 

  26. Rao, R., Card, S.K.: The Table Lens: merging graphical and symbolic representations in an interactive focus + context visualization for tabular information. In: Proceedings of the Conference on Human Factors in Computing Systems, pp. 318–322 (1994)

  27. Roth, R.: An empirically-derived taxonomy of interaction primitives for interactive cartography and geovisualization. IEEE Trans. Vis. Comput. Graph. 19(12), 2356–2365 (2013)

    Article  Google Scholar 

  28. Sadana, R., Major, T., Dove, A., Stasko, J.: OnSet: a visualization technique for large-scale binary set data. IEEE Trans. Vis. Comput. Graph. 20(12), 1993–2002 (2014)

    Article  Google Scholar 

  29. Slingsby, A., Dykes, J., Wood, J.: Exploring uncertainty in geodemographics with interactive graphics. IEEE Trans. Vis. Comput. Graph. 17(12), 2545–2554 (2011)

    Article  Google Scholar 

  30. Speckmann, B., Verbeek, K.: Necklace maps. IEEE Trans. Vis. Comput. Graph. 16(6), 881–889 (2010)

    Article  MATH  Google Scholar 

  31. Swedberg, B., Robinson, A.C., Hardisty, F., Peuquet, D.J.: Geovisualization of spatio-temporal events in STempo. In: GeoVisual Analytics: Interactivity, Dynamics, and Scale Workshop at GIScience Conference (2014)

  32. Tennekes, M., de Jonge, E.: Tree colors: color schemes for tree-structured data. IEEE Trans. Vis. Comput. Graph. 20(12), 2072–2081 (2014)

    Article  Google Scholar 

  33. Tominski, C., Schulz, H.J.: The great wall of space-time. In: Proceedings of the Workshop on Vision, Modeling and Visualization, pp. 199–206 (2012)

  34. United States Census Bureau. http://www.census.gov/. Accessed Jan 2015

  35. U.S. Energy Information Administration: State Energy Data System. http://www.eia.gov/state/seds/. Accessed Nov 2016

  36. Ware, C.: Information Visualization: Perception for Design, 3rd edn. Morgan Kaufmann Publishers, Los Altos (2012)

    Google Scholar 

  37. Wickham, H., Hofmann, H.: Product plots. IEEE Trans. Vis. Comput. Graph. 17(12), 2223–2230 (2011)

    Article  Google Scholar 

  38. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann Publishers, Los Altos (2005)

    MATH  Google Scholar 

  39. Xiaoru, Y., Peihong, G., He, X., Hong, Z., Huamin, Q.: Scattering points in parallel coordinates. IEEE Trans. Vis. Comput. Graph. 15(6), 1001–1008 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the National Science Foundation Grants IIP1069147, CNS1302246, IIS1527200, NRT1633299, and CNS1650499.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Hwan Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.H., Nadeem, S. & Kaufman, A. GeoBrick: exploration of spatiotemporal data. Vis Comput 35, 191–204 (2019). https://doi.org/10.1007/s00371-017-1461-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1461-y

Keywords

Navigation