Skip to main content
Log in

WpmDecolor: weighted projection maximum solver for contrast-preserving decolorization

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents a novel semi-reference inspired color-to-gray conversion model for faithfully preserving the contrast details of the color image, essentially differs from most of the no-reference and reference approaches. In the proposed model, on the basic assumption that a good gray conversion should make the conveyed gradient values (i.e., contrast) to be maximal, we present a projection maximum function to model the decolorization procedure. We further incorporate weights of the original gradients into the maximum function. The Gaussian weighted factor consisting of the gradients of each channel of the input color image is employed to better reflect the degree of preserving feature discriminability and color ordering in color-to-gray conversion. The projected gradient descent and discrete searching techniques are developed to solve the proposed model with and without nonnegative constraint, respectively. Extensive experimental evaluations on two existing datasets, containing abundant colors and patterns, show that the proposed method outperforms the state-of-the-art methods quantitatively and qualitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bala, R., Eschbach, R.: Spatial color-to-grayscale transform preserving chrominance edge information. In: Color Imaging Conference, pp. 82–86 (2004)

  2. Neumann, L., Cadık, M., Nemcsics, A.: An efficient perception-based adaptive color to gray transformation. In: Computational Aesthetics, pp. 73–80 (2007)

  3. Smith, K., Landes, P.E., Thollot, J., Myszkowski, K.: Apparent greyscale: a simple and fast conversion to perceptually accurate images and video. Comput. Gr. Forum 27(2), 193–200 (2008)

    Article  Google Scholar 

  4. Jin, Z., Li, F., Ng, M.K.: A variational approach for image decolorization by variance maximization. SIAM J. Imaging Sci. 7(2), 944–968 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Du, H., He, S., Sheng, B., et al.: Saliency-guided color-to-gray conversion using region-based optimization. IEEE Trans. Image Process. 24(1), 434–443 (2015)

    Article  MathSciNet  Google Scholar 

  6. Gooch, A.A., Olsen, S.C., Tumblin, J., Gooch, B.: Color2gray: salience-preserving color removal. ACM Trans. Gr. 24(3), 634–639 (2005)

    Article  Google Scholar 

  7. Rasche, K., Geist, R., Westall, J.: Re-coloring images for gamuts of lower dimension. Comput. Gr. Forum 24(3), 423–432 (2005)

    Article  Google Scholar 

  8. Kim, Y., Jang, C., Demouth, J., Lee, S.: Robust color-to gray via nonlinear global mapping. ACM Trans. Gr. 28(5), 1–4 (2009)

    Google Scholar 

  9. Kuk, J.G., Ahn, J.H., Cho, N.I.: A color to grayscale conversion considering local and global contrast. Proc. ACCV 4, 513–524 (2010)

    Google Scholar 

  10. Song, M., Tao, D., Chen, C., Li, X., Chen, C.W.: Color to gray: visual cue preservation. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1537–1552 (2010)

    Article  Google Scholar 

  11. Lu, C., Xu, L., Jia, J.: Contrast preserving decolorization. In: IEEE International Conference on Computational Photography (ICCP), pp. 1–7 (2012)

  12. Song, Y., Bao, L., Xu, X., Yang, Q.: Decolorization: is rgb2gray () out? In: ACM SIGGRAPH Asia Technical Briefs (2013)

  13. Liu, Q., Liu, P.X., Xie, W., Wang, Y., Liang, D.: GcsDecolor: gradient correlation similarity for efficient contrast preserving decolorization. IEEE Trans. Image Process. 24(9), 2889–2904 (2015)

    Article  MathSciNet  Google Scholar 

  14. Grundland, M., Dodgson, N.A.: Decolorize: fast, contrast enhancing, color to grayscale conversion. Pattern Recognit. 40(11), 2891–2896 (2007)

    Article  Google Scholar 

  15. Song, M., Tao, D., Bu, J., Chen, C., Yang, Y.: Color-to-gray based on chance of happening preservation. Neurocomputing 119, 222–231 (2013)

    Article  Google Scholar 

  16. Lu, C., Xu, L., Jia, J.: Real-time contrast preserving decolorization. In: ACM SIGGRAPH Asia Technical Berief (2012)

  17. Lu, C., Xu, L., Jia, J.: Contrast preserving decolorization with perception-based quality metrics. Int J. Comput. Vis. 110, 222–239 (2014)

    Article  Google Scholar 

  18. Ancuti, C.O., Ancuti, C., Bekaert, P.: Enhancing by saliency guided decolorization. In: Proceedings of IEEE Conference on CVPR, pp. 257–264 (2011)

  19. Cad’ık, M.: Perceptual evaluation of color-to-grayscale image conversions. Comput. Gr. Forum 27(7), 1745–1754 (2008)

    Article  Google Scholar 

  20. Ancuti, C.O., Ancuti, C., Hermans, C.: Image and video decolorization by fusion. In: Computer Vision, pp. 79–92 (2010)

  21. Lau, C., Heidrich, W., Mantiuk, R.: Cluster-based color space optimizations. In: IEEE International Conference on Computer Vision, ICCV, pp. 1172–1179 (2011)

  22. Song, Y., Bao, L., Yang, Q.: Real-time video decolorization using bilateral filtering. In: IEEE Applications of Computer Vision, pp. 159–166 (2014)

  23. Yoo, M.J., Lee, I.K., Lee, S.: Color sequence preserving decolorization. Comput. Gr. Forum 34, 373–383 (2015)

    Article  Google Scholar 

  24. Zhu, W., Hu, R., Liu, L.: Grey conversion via perceived-contrast. Vis. Comput. 30(3), 299–309 (2014)

    Article  Google Scholar 

  25. Kuhn, G.R., Oliveira, M.M., Fernandes, L.A.F.: An improved contrast enhancing approach for color-to-grayscale mappings. Vis. Comput. 24(7), 505–514 (2008)

    Article  Google Scholar 

  26. Ji, Z., Fang, M.E., Wang, Y., et al.: Efficient decolorization preserving dominant distinctions. Vis. Comput. 32(12), 1–11 (2016)

    Article  Google Scholar 

  27. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Gr. 27(3), 67 (2008)

    Article  Google Scholar 

  28. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of IEEE International Conference on Computer Vision, pp. 839–846 (1998)

  29. Liu, Q., Luo, J., Zhu, Y.: Adaptive image decomposition by improved bilateral filter. Int. J. Comput. Appl. 23(7), 16–22 (2011)

    Google Scholar 

  30. Liu, Q., Xiong, B., Zhang, M.: Adaptive sparse norm and nonlocal total variation methods for image smoothing. Math. Probl. Eng. 2014, 18 (2014). https://doi.org/10.1155/2014/426125. (Article ID 426125)

    Google Scholar 

  31. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.: Face recognition using Laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)

    Article  Google Scholar 

  32. Calamai, Paul H., Mor’e, Jorge J.: Projected gradient methods for linearly constrained problems. Math. Program. 39, 93–116 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, Q., Liang, D., Song, Y., Luo, J., Zhu, Y., Li, W.: Augmented Lagrangian based sparse representation method with dictionary updating for image deblurring. SIAM J. Imaging Sci. 6(3), 1689–1718 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. Proc. IEEE Conf. ICCV 2, 416–423 (2001)

    Google Scholar 

  35. Ma, K., Zhao, T., Zeng, K., Wang, Z.: Objective quality assessment for color-to-gray image conversion. IEEE Trans. Image Process. 24(12), 4673–4685 (2015)

    Article  MathSciNet  Google Scholar 

  36. Kline, D.M., Berardi, V.L.: Revisiting squared-error and cross-entropy functions for training neural network classifiers. Neural Comput. Appl. 14(4), 310–318 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the anonymous reviewers for their valuable comments and constructive suggestions that are very helpful in the improvement of this paper. The authors also thank Lu et al. for sharing their experiment materials and source codes. This work was supported in part by the National Natural Science Foundation of China under 61661031, 61362001, 61365013, 61503176, the international scientific and technological cooperation projects of Jiangxi Province (No. 20141BDH80001), and Young scientists training plan of Jiangxi province (Nos. 20142BCB23001, 20162BCB23019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binjie Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Li, S., Xiong, J. et al. WpmDecolor: weighted projection maximum solver for contrast-preserving decolorization. Vis Comput 35, 205–221 (2019). https://doi.org/10.1007/s00371-017-1464-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1464-8

Keywords

Navigation