Skip to main content
Log in

Navigation in AR based on digital replicas

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we address the two main topics of 3D navigation and space identification within the context of mixed reality. Creating navigable digital replicas from real-life buildings is a cumbersome task. We present a mostly automated pipeline to process 3D geometry created from architectural blueprints. We discuss a coherent procedural approach to build the topological information required for navigation and a semiautomatic generation of hierarchical tags for identification of spaces. The geometric and topological information along with tags is stored in a spatial database. We address challenges in automating the entire process such that manual effort is reduced to minimal. Our approach to asset creation enables navigation and identification in both indoor and outdoor spaces. Such a digital infrastructure is central to any VR and AR system that utilizes these assets for further computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alnabhan, A., Tomaszewski, B.: Insar: indoor navigation system using augmented reality. In: Proceedings of the Sixth ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness, pp. 36–43. ACM (2014)

  2. Azuma, R.T.: A survey of augmented reality. Presence Teleoper. Virtual Environ. 6(4), 355–385 (1997)

    Article  Google Scholar 

  3. Bartie, P.J., Mackaness, W.A.: Development of a speech-based augmented reality system to support exploration of cityscape. Trans. GIS 10(1), 63–86 (2006)

    Article  Google Scholar 

  4. Chen, J., Bautembach, D., Izadi, S.: Scalable real-time volumetric surface reconstruction. ACM Trans. Graph. 32(4), 113 (2013)

    MATH  Google Scholar 

  5. Craig, A.B.: Understanding Augmented Reality: Concepts and Applications. Morgan Kaufmann, Waltham (2013)

    Google Scholar 

  6. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: real-time single camera slam. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)

    Article  Google Scholar 

  7. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  8. El-Hakim, S.F., Beraldin, J.A., Picard, M., Godin, G.: Detailed 3d reconstruction of large-scale heritage sites with integrated techniques. IEEE Comput. Graph. Appl. 24(3), 21–29 (2004)

    Article  Google Scholar 

  9. Engel, J., Schöps, T., Cremers, D.: Lsd-slam: Large-scale direct monocular slam. In: European Conference on Computer Vision, pp. 834–849. Springer (2014)

  10. Feiner, S., MacIntyre, B., Höllerer, T., Webster, A.: A touring machine: prototyping 3d mobile augmented reality systems for exploring the urban environment. Pers. Technol. 1(4), 208–217 (1997)

    Article  Google Scholar 

  11. Google: Google Maps (2017). URL https://maps.google.com. Accessed 6 Feb 2018

  12. Grinberg, M.: Flask Web Development: Developing Web Applications with Python. O’Reilly Media, Newton (2014)

    Google Scholar 

  13. Heckbert, P.: A seed fill algorithm. In: Glassner, A. (ed.) Graphics Gems, pp. 275–277. Academic Press, London (1990)

    Chapter  Google Scholar 

  14. Hollerer, T., Feiner, S., Pavlik, J.: Situated documentaries: Embedding multimedia presentations in the real world. In: The Third International Symposium on Wearable Computers, 1999. Digest of Papers, pp. 79–86. IEEE (1999)

  15. Kalkusch, M., Lidy, T., Knapp, N., Reitmayr, G., Kaufmann, H., Schmalstieg, D.: Structured visual markers for indoor pathfinding. In: The First IEEE International Workshop on Augmented Reality Toolkit, pp. 8–pp. IEEE (2002)

  16. Langlotz, T., Degendorfer, C., Mulloni, A., Schall, G., Reitmayr, G., Schmalstieg, D.: Robust detection and tracking of annotations for outdoor augmented reality browsing. Comput. Graph. 35(4), 831–840 (2011)

    Article  Google Scholar 

  17. Lewis, R., Séquin, C.: Generation of 3D building models from 2D architectural plans. Comput. Aided Des. 30(10), 765–779 (1998)

    Article  MATH  Google Scholar 

  18. Low, C.G., Lee, Y.L.: Sunmap+: An intelligent location-based virtual indoor navigation system using augmented reality. In: International Conference on Frontiers of Communications, Networks and Applications (ICFCNA 2014-Malaysia), pp. 1–6 (2014)

  19. Meyer, F., Beucher, S.: Morphological segmentation. J. Vis. Commun. Image Represent. 1(1), 21–46 (1990)

    Article  Google Scholar 

  20. Min, P.: [binvox] 3D mesh voxelizer. http://www.patrickmin.com/binvox/. Accessed 6 Feb 2018

  21. Mulloni, A., Seichter, H., Schmalstieg, D.: Handheld augmented reality indoor navigation with activity-based instructions. In: Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services, pp. 211–220. ACM (2011)

  22. Musialski, P., Wonka, P., Aliaga, D.G., Wimmer, M., Gool, L.v., Purgathofer, W.: A survey of urban reconstruction. In: Computer Graphics Forum, vol. 32, pp. 146–177. Wiley Online Library (2013)

  23. Nooruddin, F.S., Turk, G.: Simplification and repair of polygonal models using volumetric techniques. IEEE Trans. Vis. Comput. Graph. 9(2), 191–205 (2003)

    Article  Google Scholar 

  24. Pandey, J., Sharma, O.: Fast and robust construction of 3D architectural models from 2D plans. In: 24th Conference on Computer Graphics, Visualization and Computer Vision (WSCG), vol. 24, pp. 335–341 (2016)

  25. Rekimoto, J., Saitoh, M.: Augmented surfaces: a spatially continuous work space for hybrid computing environments. In: Proceedings of the SIGCHI conference on Human Factors in Computing Systems, pp. 378–385. ACM (1999)

  26. Savitzky, A., Golay, M.J.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36(8), 1627–1639 (1964)

    Article  Google Scholar 

  27. Shin, B., Lee, J.H., Lee, T., Kim, H.S.: Enhanced weighted k-nearest neighbor algorithm for indoor wi-fi positioning systems. In: 2012 8th International Conference on Computing Technology and Information Management (ICCM), vol. 2, pp. 574–577. IEEE (2012)

  28. Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Berlin (2013)

    MATH  Google Scholar 

  29. Tagliasacchi, A., Alhashim, I., Olson, M., Zhang, H.: Mean curvature skeletons. In: Computer Graphics Forum, vol. 31, pp. 1735–1744. Wiley Online Library (2012)

  30. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991)

    Article  Google Scholar 

  31. Vlahakis, V., Karigiannis, J., Tsotros, M., Gounaris, M., Almeida, L., Stricker, D., Gleue, T., Christou, I.T., Carlucci, R., Ioannidis, N.: Archeoguide: first results of an augmented reality, mobile computing system in cultural heritage sites. In: Virtual Reality, Archeology, and Cultural Heritage, vol. 9 (2001)

  32. Wagner, D., Mulloni, A., Langlotz, T., Schmalstieg, D.: Real-time panoramic mapping and tracking on mobile phones. In: 2010 IEEE Virtual Reality Conference (VR), pp. 211–218. IEEE (2010)

  33. Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J., McDonald, J.: Kintinuous: Spatially extended kinectfusion (2012)

  34. Yin, X., Wonka, P., Razdan, A.: Generating 3D building models from architectural drawings: a survey. IEEE Comput. Graph. Appl. 1, 20–30 (2009)

    Article  Google Scholar 

  35. Zhu, J., Zhang, H., Wen, Y.: A new reconstruction method for 3D buildings from 2D vector floor plan. Comput. Aided Des. Appl. 11(6), 704–714 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Science and Engineering Research Board (SERB) of Department of Science and Technology (DST) of India (Grant No. ECR/2015/000006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ojaswa Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 40312 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, O., Pandey, J., Akhtar, H. et al. Navigation in AR based on digital replicas. Vis Comput 34, 925–936 (2018). https://doi.org/10.1007/s00371-018-1530-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1530-x

Keywords

Navigation