Skip to main content
Log in

PolarViz: a discriminating visualization and visual analytics tool for high-dimensional data

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Visual analytics tools are of paramount importance in handling high-dimensional datasets such as those in our turbine performance assessment. Conventional tools such as RadViz have been used in 2D exploratory data analysis. However, with the increase in dataset size and dimensionality, the clumping of projected data points toward the origin in RadViz causes low space utilization, which largely degenerates the visibility of the feature characteristics. In this study, to better evaluate the hidden patterns in the center region, we propose a new focus + context distortion approach, termed PolarViz, to manipulate the radial distribution of data points. We derive radial equalization to automatically spread out the frequency, and radial specification to shape the distribution based on user’s requirement. Computational experiments have been conducted on two datasets including a benchmark dataset and a turbine performance simulation data. The performance of the proposed algorithm as well as other methods for solving the clumping problem in both data space and image space are illustrated and compared, and the pros and cons are analyzed. Moreover, a user study was conducted to assess the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Albuquerque, G., Eisemann, M., Lehmann, D.J., Theisel, H., Magnor, M.: Improving the visual analysis of high-dimensional datasets using quality measures. In: IEEE Symposium on Visual Analytics Science and Technology (VAST), 2010, pp. 19–26. IEEE (2010)

  2. Artero, A.O., de Oliveira, M.C.F.: Viz3d: effective exploratory visualization of large multidimensional data sets. In: Proceedings of 17th Brazilian Symposium on Computer Graphics and Image Processing, 2004, pp. 340–347. IEEE (2004)

  3. Basu, A., Licardie, S.: Alternative models for fish-eye lenses. Pattern Recognit. Lett. 16(4), 433–441 (1995)

    Article  Google Scholar 

  4. Bertini, E., Santucci, G.: By chance is not enough: preserving relative density through nonuniform sampling. In: Proceedings of 8th International Conference on Information Visualisation, 2004. IV 2004, pp. 622–629. IEEE (2004)

  5. Chen, K., Liu, L.: iVIBRATE: interactive visualization-based framework for clustering large datasets. ACM Trans. Inf. Syst. (TOIS) 24(2), 245–294 (2006)

    Article  Google Scholar 

  6. Daniels, K., Grinstein, G., Russell, A., Glidden, M.: Properties of normalized radial visualizations. Inf. Vis. 11(4), 273–300 (2012)

    Article  Google Scholar 

  7. Draper, G.M., Livnat, Y., Riesenfeld, R.F.: A survey of radial methods for information visualization. IEEE Trans. Vis. Comput. Graph. 15(5), 759–776 (2009)

    Article  Google Scholar 

  8. Ellis, G., Dix, A.: A taxonomy of clutter reduction for information visualisation. IEEE Trans. Vis. Comput. Graph. 13(6), 1216–1223 (2007)

    Article  Google Scholar 

  9. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936)

    Article  Google Scholar 

  10. Heer, J., Shneiderman, B.: Interactive dynamics for visual analysis. Queue 10(2), 30 (2012)

    Article  Google Scholar 

  11. Hoffman, P., Grinstein, G., Marx, K., Grosse, I., Stanley, E.: DNA visual and analytic data mining. In: Proceedings of Visualization’97, pp. 437–441. IEEE (1997)

  12. Hughes, C., Glavin, M., Jones, E., Denny, P.: Review of geometric distortion compensation in fish-eye cameras. In: IET Conference Proceedings, pp. 162–167. Institution of Engineering and Technology (2008)

  13. Ibrahim, A., Rahnamayan, S., Martin, M.V., Deb, K.: 3D-RadVis: visualization of Pareto front in many-objective optimization. In: IEEE Congress on Evolutionary Computation (CEC), 2016, pp. 736–745. IEEE (2016)

  14. Inselberg, A.: Parallel Coordinates. Springer, Berlin (2009)

    Book  Google Scholar 

  15. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, Inc., Upper Saddle River (1989)

    MATH  Google Scholar 

  16. Kadmon, N., Shlomi, E.: A polyfocal projection for statistical surfaces. Cartogr. J. 15(1), 36–41 (1978)

    Article  Google Scholar 

  17. Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

  18. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1), 1–27 (1964)

    Article  MathSciNet  Google Scholar 

  19. Leung, Y.K., Apperley, M.D.: A review and taxonomy of distortion-oriented presentation techniques. ACM Trans. Comput. Hum. Interact. (TOCHI) 1(2), 126–160 (1994)

    Article  Google Scholar 

  20. Liu, S., Cui, W., Wu, Y., Liu, M.: A survey on information visualization: recent advances and challenges. Vis. Comput. 30(12), 1373–1393 (2014)

    Article  Google Scholar 

  21. Liu, S., Maljovec, D., Wang, B., Bremer, P.T., Pascucci, V.: Visualizing high-dimensional data: advances in the past decade. IEEE Trans. Vis. Comput. Graph. 23(3), 1249–1268 (2017)

    Article  Google Scholar 

  22. Maaten, Lvd, Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  23. Mackinlay, J.D., Robertson, G.G., Card, S.K.: The perspective wall: detail and context smoothly integrated. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 173–176. ACM (1991)

  24. NASA: Enginesim version 1.8a (2014). https://www.grc.nasa.gov/www/k-12/airplane/ngnsim.html

  25. Nováková, L., Štepanková, O.: Radviz and identification of clusters in multidimensional data. In: 13th International Conference on Information Visualisation, 2009, pp. 104–109. IEEE (2009)

  26. Ono, J.H.P., Sikansi, F., Corrêa, D.C., Paulovich, F.V., Paiva, A., Nonato, L.G.: Concentric RadViz: visual exploration of multi-task classification. In: 28th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), 2015, pp. 165–172. IEEE (2015)

  27. Packer, J.F., Hasan, M., Samavati, F.F.: Illustrative multilevel focus+ context visualization along snaking paths. Vis. Comput. 33(10), 1291–1306 (2017)

    Article  Google Scholar 

  28. Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)

    Article  Google Scholar 

  29. Pryke, A., Mostaghim, S., Nazemi, A.: Heatmap visualization of population based multi objective algorithms. In: International Conference on Evolutionary Multi-Criterion Optimization, pp. 361–375. Springer (2007)

  30. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  31. Rubio-Sánchez, M., Raya, L., Diaz, F., Sanchez, A.: A comparative study between radviz and star coordinates. IEEE Trans. Vis. Comput. Graph. 22(1), 619–628 (2016)

    Article  Google Scholar 

  32. Russell, A., Daniels, K., Grinstein, G.: Voronoi diagram based dimensional anchor assessment for radial visualizations. In: 16th International Conference on Information Visualisation, 2012, pp. 229–233. IEEE (2012)

  33. Russell, A., Marceau, R., Kamayou, F., Daniels, K., Grinstein, G.: Clustered data separation via barycentric radial visualization. In: Proceedings of the International Conference on Modeling, Simulation and Visualization Methods (MSV), p. 1. The Steering Committee of the World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp) (2014)

  34. Sarkar, M., Brown, M.H.: Graphical fisheye views of graphs. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 83–91. ACM (1992)

  35. Sharko, J., Grinstein, G., Marx, K.A.: Vectorized radviz and its application to multiple cluster datasets. IEEE Trans. Vis. Comput. Graph. 14(6), 1427–1444 (2008)

    Article  Google Scholar 

  36. Spence, R., Apperley, M.: Data base navigation: an office environment for the professional. Behav. Inf. Technol. 1(1), 43–54 (1982)

    Article  Google Scholar 

  37. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  38. Wang, Y.C., Zhang, Q., Lin, F., Goh, C.K., Wang, X., Seah, H.S.: Histogram equalization and specification for high-dimensional data visualization using RadViz. In: Proceedings of the Computer Graphics International Conference, CGI ’17, pp. 15:1–15:6. ACM (2017)

  39. Zhou, F., Huang, W., Li, J., Huang, Y., Shi, Y., Zhao, Y.: Extending dimensions in RadViz based on mean shift. In: IEEE Pacific Visualization Symposium (PacificVis), 2015, pp. 111–115. IEEE (2015)

Download references

Acknowledgements

This work was conducted within the Rolls-Royce@NTU Corporate Lab with support from the National Research Foundation (NRF) Singapore under the Corp Lab@University Scheme. The work is largely extended from our CGI 2017 paper [38].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y.C., Zhang, Q., Lin, F. et al. PolarViz: a discriminating visualization and visual analytics tool for high-dimensional data. Vis Comput 35, 1567–1582 (2019). https://doi.org/10.1007/s00371-018-1558-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1558-y

Keywords

Navigation