Skip to main content
Log in

A novel approach for scale and rotation adaptive estimation based on time series alignment

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper proposes a novel approach for target scale and rotation adaptive estimation based on template matching, which is robust to undergo brightness, contrast invariance, and noise corruption. Improved features based on ring projection transform are extracted, which can not only improve the matching ability of some special scenes by taking into account changes of pixel intensity and structure information, but also automatically recommend the sampling rings involved in the angle estimation. Moreover, treating image features from the perspective of signal time series, we have designed a hierarchical adaptive estimation strategy to solve the problem of scale invariance while reconstructing the transformation of brightness and contrast. Eliminating the limitations of the pre-prepared fixed-scale vertex template, the proposed approach implements an adaptive estimation of the scale. Additionally, rotation angle calculation based on the normalization cross-correlation can be used as the secondary verification of the candidate solution to further improve the matching accuracy. Numerical evaluation shows that the method enjoys attractive results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kruse, D., Wen, J.T., Radke, R.J.: A sensor-based dual-arm tele-robotic system. IEEE Trans. Autom. Sci. Eng. 12(1), 4–18 (2015)

    Google Scholar 

  2. Attene, M., Marini, S., Spagnuolo, M., et al.: Part-in-whole 3D shape matching and docking. Vis. Comput. Int. J. Comput. Graph. 27(11), 991–1004 (2011)

    Google Scholar 

  3. Kanezaki, A., Harada, T., Kuniyoshi, Y.: Partial matching of real textured 3D objects using color cubic higher-order local auto-correlation features. Vis. Comput. 26(10), 1269–1281 (2010)

    Google Scholar 

  4. Jia, B., Liu, R., Zhu, M.: Real-time obstacle detection with motion features using monocular vision. Vis. Comput. 31(3), 281–293 (2015)

    Google Scholar 

  5. Nandi, C.S., Tudu, B., Koley, C.: Machine vision based techniques for automatic mango fruit sorting and grading based on maturity level and size. In: Sensing Technology: Current Status and Future Trends II. Springer International Publishing (2014)

  6. Ge, J., Xie, S., Wang, Y., et al.: A system for automated detection of ampoule injection impurities. IEEE Trans. Autom. Sci. Eng. 99, 1–10 (2017)

    Google Scholar 

  7. Yang, Y., Zha, Z.J., Gao, M., et al.: A robust vision inspection system for detecting surface defects of film capacitors. Sig. Process. 124C, 54–62 (2016)

    Google Scholar 

  8. Li, J., Bennett, B.L., Karam, L.J., et al.: Stereo vision based automated solder ball height and substrate coplanarity inspection. IEEE Trans. Autom. Sci. Eng. 13(2), 757–771 (2016)

    Google Scholar 

  9. Jafri, R., Ali, S.A., Arabnia, H.R., et al.: Computer vision-based object recognition for the visually impaired in an indoors environment: a survey. Vis. Comput. 30(11), 1197–1222 (2014)

    Google Scholar 

  10. Luhandjula, T., Monacelli, E., Hamam, Y., et al.: Visual intention detection for wheelchair motion. Vis. Comput. 4(2), 98–108 (2012)

    Google Scholar 

  11. Kong, H., Yang, J., Chen, Z.: Accurate and efficient inspection of speckle and scratch defects on surfaces of planar products. IEEE Trans. Industr. Inf. 99, 1 (2017)

    Google Scholar 

  12. Moravec, H.P.: Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover. Stanford University, Stanford (1980)

    Google Scholar 

  13. Li, C., Yang, G., Wu, J., et al.: The UAV video image stitching based on improved moravec corner matching method. Int. J. Remote Sens. Appl. 2(1), 41–44 (2012)

    Google Scholar 

  14. Su, J., Duan, X., Xiao, J.: Fast detection method of checkerboard corners based on the combination of template matching and Harris Operator. In: International Conference on Information Science and Technology. IEEE, pp. 858–861 (2013)

  15. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision. IEEE, pp 1150 (2002)

  16. Kawano, H., Orii, H., Shiraishi, K., et al.: A SIFT feature-based template matching method for detecting and counting objects in life space. Appl. Mech. Mater. 36, 413–421 (2010)

    Google Scholar 

  17. Alhwarin, F., Risti´c-Durrant, D., Gräser, A.: VF-SIFT: Very fast SIFT feature matching. In: Proceedings of 32nd DAGM Conference Pattern Recognition, pp. 222–231 (2010)

    Google Scholar 

  18. Bay, H., Tuytelaars, T., Gool, L.V.: SURF: speeded up robust features. In: European Conference on Computer Vision. Springer, New York, pp 404–417 (2006)

    Google Scholar 

  19. Rublee, E., Rabaud, V., Konolige, K., et al.: ORB: An efficient alternative to SIFT or SURF. In: IEEE International Conference on Computer Vision. IEEE, pp 2564–2571 (2012)

  20. Fraundorfer, F., Bischof, H.: Affine invariant region matching using geometric hashing of line structures (2003)

  21. Wiskott, L., Fellous, J.M., Kuiger, N., et al.: Face Recognition by Elastic Bunch Graph Matching. Intelligent Biometric Techniques in Fingerprint and Face Recognition, pp. 355–398. CRC Press Inc, Boca Raton (1999)

    Google Scholar 

  22. Hu, M.K.: Hu, M.K. Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)

    MATH  Google Scholar 

  23. Khotanzad, A., Hong, Y.H.: Invariant image recognition by Zernike moments. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 489–497 (2002)

    Google Scholar 

  24. Singh, C.: Robust two-stage face recognition approach using global and local features. Vis. Comput. 28(11), 1085–1098 (2012)

    Google Scholar 

  25. Liu, B., Wu, H., Su, W., et al.: Rotation-invariant object detection using Sector-ring HOG and boosted random ferns. Vis. Comput. 34(5), 707–719 (2018)

    Google Scholar 

  26. Sit, A., Kihara, D.: Comparison of image patches using local moment invariants. IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc. 23(5), 2369–2379 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Ullah, F., Kanekoi, S.: Using orientation codes for rotation-invariant template matching. Pattern Recogn. 37(2), 201–209 (2004)

    MATH  Google Scholar 

  28. Tanaka, K., Sano, M., Ohara, S., Okudaira, M.: A parametric template method and its application to robust matching. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 620–627 (2000)

  29. Amiri, M., Rabiee, H.R.: A novel rotation/scale invariant template matching algorithm using weighted adaptive lifting scheme transform. Pattern Recogn. 43, 2485–2496 (2010)

    MATH  Google Scholar 

  30. Chen, C.S., Huang, J.J., Huang, C.L.: Template matching using statistical model and parametric template for multi-template. J. Signal Inf. Process. 04(3), 52–57 (2013)

    Google Scholar 

  31. Tsai, D.M., Tsai, Y.H.: Rotation-invariant pattern matching with color ring-projection. Pattern Recogn. 35(1), 131–141 (2002)

    MATH  Google Scholar 

  32. Tang, Y.Y., Ma, H., Liu, J., et al.: Multiresolution analysis in extraction of reference lines from documents with gray level background. IEEE Trans. Pattern Anal. Mach. Intell. 19(8), 921–926 (1997)

    Google Scholar 

  33. Wei, B., Wang, F., Hu, X.: Rotation-invariant template matching based on ring projection and orientation codes. In: International Conference on Intelligent Control and Information Processing. IEEE, pp. 192–197 (2015)

  34. Fu, G., Zhao, H., Li, C., et al.: Road detection from optical remote sensing imagery using circular projection matching and tracking strategy. J. Indian Soc. Remote Sens. 41(4), 819–831 (2013)

    Google Scholar 

  35. Kim, H.Y., Araujo, S.A.: Grayscale template-matching invariant to rotation, scale, translation, brightness and contrast. In: Proceedings of the Pacific-Rim Symposium on Image and Video Technology, Lecture Notes in Computer Science, vol. 4872, Springer, Santiago, Chile, pp. 100–113 (2007)

    Google Scholar 

  36. Lin, Y.H., Chen, C.H.: Template Matching Using the Parametric Template Vector with Translation, Rotation and Scale Invariance. Elsevier Science Inc, New York (2008)

    MATH  Google Scholar 

  37. Kim, H.Y.: Rotation-discriminating template matching based on fourier coefficients of radial projections with robustness to scaling and partial occlusion. Pattern Recogn. 43, 859–872 (2010)

    MATH  Google Scholar 

  38. Shih, H.C., Yu, K.C.: SPiraL Aggregation Map (SPLAM): a new descriptor for robust template matching with fast algorithm. Pattern Recogn. 48(5), 1707–1723 (2015)

    Google Scholar 

  39. Wang, X., Xiao, B., Ma, J.F., et al.: Scaling and rotation invariant analysis approach to object recognition based on Radon and Fourier–Mellin transforms. Sci. Technol. Inf. 40(12), 3503–3508 (2008)

    MATH  Google Scholar 

  40. Zhang, H., Shu, H.Z., Haigron, P., et al.: Construction of a complete set of orthogonal Fourier–Mellin moment invariants for pattern recognition applications. Image Vis. Comput. 28(1), 38–44 (2010)

    Google Scholar 

  41. Hast, A., Marchetti, A.: Rotation invariant feature matching-based on Gaussian filtered log polar transform and phase correlation. In: International Symposium on Image and Signal Processing and Analysis. IEEE, pp 107–112 (2015)

  42. Cho, H.J., Park, T.H.: Wavelet transform based image template matching for automatic component inspection. Int. J. Adv. Manuf. Technol. 50(9–12), 1033–1039 (2010)

    Google Scholar 

  43. Quellec, G., Lamard, M., Josselin, P.M., et al.: Detection of lesions in retina photographs based on the wavelet transform. In: Engineering in Medicine and Biology Society, 2006. Embs ‘06. International Conference of the IEEE, pp 2618 (2016)

  44. Chen, G.Y., Bui, T.D., Krzyżak, A.: Invariant pattern recognition using radon, dual-tree complex wavelet and Fourier transforms. Pattern Recogn. 42(9), 2013–2019 (2009)

    MATH  Google Scholar 

  45. Chu, G.L., Wang, Y.J.: Shape features detection based on hough transform in images. Appl. Mech. Mater. 644–650, 1104–1106 (2014)

    Google Scholar 

  46. Li, T., Ye, M., Ding, J.: Discriminative Hough context model for object detection. Vis. Comput. 30(1), 59–69 (2014)

    Google Scholar 

  47. Chen, B., Deng, X., Yang, J.: Orientation-invariant generalized Hough transform algorithm based on U-chord curvature. J. Comput. Appl. 35, 2619–2623 (2015)

    Google Scholar 

  48. Yang, H., Zheng, S., Lu, J., et al.: Polygon-invariant generalized hough transform for high-speed vision-based positioning. IEEE Trans. Autom. Sci. Eng. 13(3), 1367–1384 (2016)

    Google Scholar 

  49. Korman, S., Reichman, D., Tsur, G., et al.: FasT-match: fast affine template matching. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, pp 2331–2338 (2013)

  50. Jia, D., Cao, J., Song, W.D., et al.: Colour FAST (CFAST) match: fast affine template matching for colour images. Electron. Lett. 52(14), 1220–1221 (2016)

    Google Scholar 

  51. Zhang, C., Akashi, T.: Fast affine template matching over galois field. In: British Machine Vision Conference (2015)

  52. Dekel, T., Oron, S., Rubinstein, M., et al.: Best-Buddies Similarity for robust template matching. Computer Vision and Pattern Recognition. IEEE, pp 2021–2029 (2015)

  53. Oron, S., Dekel, T., Xue, T., et al.: Best-buddies similarity—robust template matching using mutual nearest neighbors. IEEE Trans. Pattern Anal. Mach. Intell. 99, 1 (2017)

    Google Scholar 

  54. Rabiner, L., Juang, B.-H.: Fundamentals of Speech Recognition. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  55. Visual Geometry Group, Robotics Research Group, Department of Engineering Science, University of Oxford. [Internet]. [cited 2015 September] http://www.robots.ox.ac.uk/~vgg/data/

Download references

Acknowledgements

The State Key Laboratory of Precision Measurement Technology and Instruments provided research facilities for this work.

Funding

This study was funded by The State Key Laboratory of Precision Measurement Technology and Instruments (No. PIL1404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuzhou Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Du, F. A novel approach for scale and rotation adaptive estimation based on time series alignment. Vis Comput 36, 175–189 (2020). https://doi.org/10.1007/s00371-018-1598-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1598-3

Keywords

Navigation