Skip to main content
Log in

Total generalized variation-based Retinex image decomposition

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Human visual system (HVS) can perceive color under varying illumination conditions, and Retinex theory is precisely aimed to simulate and explain how the HVS perceives reflectance regardless of different illumination conditions. In this paper, we introduce a reflectance and illumination decomposition model for the Retinex problem via total generalized variation regularization and \(H^{1}\) decomposition. The total generalized variation regularization ameliorates the staircasing artifacts that appear in the reflectance component of existing total variation-based models and \(H^{1}\) norm guarantees smoother illumination. We analyze the existence and uniqueness of the proposed model and employ an alternating minimization scheme based on split Bregman iteration. We present numerous numerical experiments on both grayscale and color images to make comparisons with several state-of-the-art methods and demonstrate that our method is comparable both quantitatively and qualitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Blake, A.: Boundary conditions for lightness computation in mondrian world. Comput. Vis. Graph. Image Process. 32(3), 314–327 (1985)

    Google Scholar 

  2. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Bredies, K., Kunisch, K., Valkonen, T.: Properties of l1-tgv2: the one-dimensional case. J. Math. Anal. Appl. 398(1), 438–454 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)

    MathSciNet  MATH  Google Scholar 

  5. Chang, H., Ng, M.K., Wang, W., Zeng, T.: Retinex image enhancement via a learned dictionary. Opt. Eng. 54(1), 013107–013107 (2015)

    Google Scholar 

  6. Cheng, M.H., Huang, T.Z., Zhao, X.L., Ma, T.H., Huang, J.: A variational model with hybrid hyper-Laplacian priors for retinex. Appl. Math. Model. 66, 305–321 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Choi, D.H., Jang, I.H., Kim, M.H., Kim, N.C.: Color image enhancement based on single-scale retinex with a jnd-based nonlinear filter. In: Proceedings of 2007 IEEE International Symposium on Circuits and Systems, pp. 3948–3951. IEEE (2007)

  8. Choi, D.H., Jang, I.H., Kim, M.H., Kim, N.C.: Color image enhancement using single-scale retinex based on an improved image formation model. In: Proceedings of the 16th European Signal Processing Conference, pp. 1–5. IEEE (2008)

  9. Ciurea, F., Funt, B.: Tuning retinex parameters. J. Electron. Imaging 13(1), 48–57 (2004)

    Google Scholar 

  10. Cooper, T.J., Baqai, F.A.: Analysis and extensions of the Frankle–Mccann retinex algorithm. J. Electron. Imaging 13(1), 85–93 (2004)

    Google Scholar 

  11. Duan, J., Pan, Z., Yin, X., Wei, W., Wang, G.: Some fast projection methods based on Chan–Vese model for image segmentation. EURASIP J. Image Video Process. 2014(1), 7–7 (2014)

    Google Scholar 

  12. Duan, J., Pan, Z., Zhang, B., Liu, W., Tai, X.C.: Fast algorithm for color texture image inpainting using the non-local CTV model. J. Global Optim. 62(4), 853–876 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Frankle, J.A., McCann, J.J.: Method and apparatus for lightness imaging (1983). US Patent 4384336

  14. Fu, X., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A weighted variational model for simultaneous reflectance and illumination estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2782–2790 (2016)

  15. Funt, B., Ciurea, F., McCann, J.: Retinex in matlab. In: Proceedings of Color and Imaging Conference, vol. 2000, pp. 112–121. Society for Imaging Science and Technology (2000)

  16. Funt, B.V., Drew, M.S., Brockington, M.: Recovering shading from color images. In: Proceedings of European Conference on Computer Vision, pp. 124–132. Springer (1992)

  17. Gao, Y., Hu, H.M., Li, B., Guo, Q.: Naturalness preserved nonuniform illumination estimation for image enhancement based on retinex. IEEE Trans. Multimed. 20(2), 335–344 (2017)

    Google Scholar 

  18. Goldstein, T., Osher, S.: The split bregman method for l1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017)

  20. Guo, X., Li, Y., Ling, H.: Lime: Low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Horn, B.K.: Determining lightness from an image. Comput. Graph. Image Process. 3(4), 277–299 (1974)

    Google Scholar 

  22. Hou, G., Wang, G., Pan, Z., Huang, B., Yang, H., Yu, T.: Image enhancement and restoration: state of the art of variational retinex models. IAENG Int. J. Comput. Sci. 44(4), 445–455 (2017)

    Google Scholar 

  23. Jiang, B., Woodell, G.A., Jobson, D.J.: Novel multi-scale retinex with color restoration on graphics processing unit. J. Real-Time Image Proc. 10(2), 239–253 (2015)

    Google Scholar 

  24. Jobson, D.J., Rahman, Z., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)

    Google Scholar 

  25. Jobson, D.J., Rahman, Z., Woodell, G.A.: Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997)

    Google Scholar 

  26. Juha, K.: Sobolev spaces. Aalto University (2017)

  27. Kang, M., Kang, M., Jung, M.: Total generalized variation based denoising models for ultrasound images. J. Sci. Comput. 72(1), 172–197 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Kimmel, R., Elad, M., Shaked, D., Keshet, R., Sobel, I.: A variational framework for retinex. Int. J. Comput. Vis. 52(1), 7–23 (2003)

    MATH  Google Scholar 

  29. Knoll, F., Bredies, K., Pock, T., Stollberger, R.: Second order total generalized variation (TGV) for MRI. Magn. Reson. Med. 65(2), 480–491 (2011)

    Google Scholar 

  30. Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108–129 (1977)

    Google Scholar 

  31. Land, E.H.: Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image, pp. 5163–5169. National Academy of Sciences (1983)

  32. Land, E.H.: Recent advances in retinex theory. In: Central and Peripheral Mechanisms of Colour Vision, pp. 5–17. Springer (1985)

  33. Land, E.H.: An alternative technique for the computation of the designator in the retinex theory of color vision, pp. 3078–3080. National Academy Sciences (1986)

  34. Land, E.H., McCann, J.J.: Lightness and retinex theory. JOSA 61(1), 1–11 (1971)

    Google Scholar 

  35. Lee, C., Lee, C., Kim, C.S.: Contrast enhancement based on layered difference representation. In: 2012 IEEE International Conference on Image Processing, pp. 965–968. IEEE (2012)

  36. Lei, L., Zhou, Y., Li, J.: An investigation of retinex algorithms for image enhancement. J. Electron. 24(5), 696–700 (2007)

    Google Scholar 

  37. Li, H., Zhang, L., Shen, H.: A perceptually inspired variational method for the uneven intensity correction of remote sensing images. IEEE Trans. Geosci. Remote Sens. 50(8), 3053–3065 (2012)

    Google Scholar 

  38. Liang, J., Zhang, X.: Retinex by higher order total variation \(l^{1}\) decomposition. J. Math. Imaging Vis. 52(3), 345–355 (2015)

    MATH  Google Scholar 

  39. Lore, K.G., Akintayo, A., Sarkar, S.: Llnet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recogn. 61, 650–662 (2017)

    Google Scholar 

  40. Lu, W., Duan, J., Qiu, Z., Pan, Z., Liu, R.W., Bai, L.: Implementation of high-order variational models made easy for image processing. Math. Methods Appl. Sci. 39(14), 4208–4233 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Ma, K., Zeng, K., Wang, Z.: Perceptual quality assessment for multi-exposure image fusion. IEEE Trans. Image Process. 24(11), 3345–3356 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Ma, W., Morel, J.M., Osher, S., Chien, A.: An l1-based variational model for retinex theory and its application to medical images. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 153–160. IEEE (2011)

  43. Ma, W., Osher, S.: A TV bregman iterative model of retinex theory. Inverse Probl. Imaging 6(4), 697–708 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Ma, Y., Feng, X., Jiang, X., Xia, Z., Peng, J.: Intrinsic image decomposition: A comprehensive review. In: International Conference on Image and Graphics, pp. 626–638. Springer (2017)

  45. Marini, D., Rizzi, A.: A computational approach to color adaptation effects. Image Vis. Comput. 18(13), 1005–1014 (2000)

    Google Scholar 

  46. Maz’ya, V.: Sobolev Spaces. Springer, Berlin (2013)

    Google Scholar 

  47. McCann, J.: Lessons learned from mondrians applied to real images and color gamuts. In: Proceedings of Color and Imaging Conference, vol. 1999, pp. 1–8. Society for Imaging Science and Technology (1999)

  48. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a completely blind image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2012)

    Google Scholar 

  49. Morel, J.M., Petro, A.B., Sbert, C.: Fast implementation of color constancy algorithms. In: Proceedings of Color Imaging XIV: Displaying, Processing, Hardcopy, and Applications, vol. 7241, pp. 724106–724106. International Society for Optics and Photonics (2009)

  50. Morel, J.M., Petro, A.B., Sbert, C.: A pde formalization of retinex theory. IEEE Trans. Image Process. 19(11), 2825–2837 (2010)

    MathSciNet  MATH  Google Scholar 

  51. Ng, M.K., Wang, W.: A total variation model for retinex. SIAM J. Imaging Sci. 4(1), 345–365 (2011)

    MathSciNet  MATH  Google Scholar 

  52. Pallara, L.A.N.F.D., Ambrosio, L., Fusco, N.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  53. Park, S., Yu, S., Kim, M., Park, K., Paik, J.: Dual autoencoder network for retinex-based low-light image enhancement. IEEE Access 6, 22084–22093 (2018)

    Google Scholar 

  54. Parthasarathy, S., Sankaran, P.: An automated multi scale retinex with color restoration for image enhancement. In: Proceedings of National Conference on Communications (NCC), pp. 1–5. IEEE (2012)

  55. Provenzi, E., De Carli, L., Alessandro, R., Marini, D.: Mathematical definition and analysis of the retinex algorithm. JOSA A 22(12), 2613–2621 (2005)

    MathSciNet  Google Scholar 

  56. Provenzi, E., De Carli, L., Rizzi, A., Marini, D.: Mathematical definition and analysis of the retinex algorithm. JOSA A 22(12), 2613–2621 (2005)

    MathSciNet  Google Scholar 

  57. Provenzi, E., Fierro, M., Rizzi, A., De Carli, L., Gadia, D., Marini, D.: Random spray retinex: a new retinex implementation to investigate the local properties of the model. IEEE Trans. Image Process. 16(1), 162–171 (2006)

    MathSciNet  Google Scholar 

  58. Rahman, Z.u., Jobson, D.J., Woodell, G.A.: Multi-scale retinex for color image enhancement. In: Proceedings of 3rd IEEE International Conference on Image Processing, vol. 3, pp. 1003–1006. IEEE (1996)

  59. Rahman, Z., Jobson, D.J., Woodell, G.A.: Retinex processing for automatic image enhancement. J. Electron. Imaging 13(1), 100–111 (2004)

    Google Scholar 

  60. Shen, L., Yue, Z., Feng, F., Chen, Q., Liu, S., Ma, J.: Msr-net: Low-light image enhancement using deep convolutional network. arXiv preprint arXiv:1711.02488 (2017)

  61. Shi, W., Loy, C.C., Tang, X.: Deep specialized network for illuminant estimation. In: European Conference on Computer Vision, pp. 371–387. Springer (2016)

  62. Shi, Y., Wu, X., Zhu, M.: Low-light image enhancement algorithm based on retinex and generative adversarial network. arXiv preprint arXiv:1906.06027 (2019)

  63. Wali, S., Zhang, H., Chang, H., Wu, C.: A new adaptive boosting total generalized variation (tgv) technique for image denoising and inpainting. J. Vis. Commun. Image Represent. 59, 39–51 (2019)

    Google Scholar 

  64. Wang, L., Xiao, L., Liu, H., Wei, Z.: Variational bayesian method for retinex. IEEE Trans. Image Process. 23(8), 3381–3396 (2014)

    MathSciNet  MATH  Google Scholar 

  65. Wang, Q., Fu, X., Zhang, X.P., Ding, X.: A fusion-based method for single backlit image enhancement. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 4077–4081. IEEE (2016)

  66. Wang, S., Zheng, J., Hu, H.M., Li, B.: Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Process. 22(9), 3538–3548 (2013)

    Google Scholar 

  67. Wang, W., He, C.: A variational model with barrier functionals for retinex. SIAM J. Imaging Sci. 8(3), 1955–1980 (2015)

    MathSciNet  MATH  Google Scholar 

  68. Wang, W., Li, B., Zheng, J., Xian, S., Wang, J.: A fast multi-scale retinex algorithm for color image enhancement. In: Proceedings of International Conference on Wavelet Analysis and Pattern Recognition, vol. 1, pp. 80–85. IEEE (2008)

  69. Wang, W., Ng, M.K.: A nonlocal total variation model for image decomposition: illumination and reflectance. Numer. Math. Theory Methods Appl. 7(3), 334–355 (2014)

    MathSciNet  MATH  Google Scholar 

  70. Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light enhancement. arXiv preprint arXiv:1808.04560 (2018)

  71. Zhang, X., Wandell, B.A., et al.: A spatial extension of cielab for digital color image reproduction. In: Proceedings of SID International Symposium Digest of Technical Papers, vol. 27, pp. 731–734. Citeseer (1996)

  72. Zosso, D., Tran, G., Osher, S.: A unifying retinex model based on non-local differential operators. In: Proceedings of Computational Imaging XI, vol. 8657, pp. 865702–865702. International Society for Optics and Photonics (2013)

Download references

Acknowledgements

We would like to thank Michael K. Ng [51], Jingwei Liang [38], Xueyang Fu [14] and Chen Wei [70] for sharing their code and the reviewers of this manuscript for their helpful comments and suggestions. This work is supported by the National Natural Science Foundation of China (61802279, 61602341) and the National Natural Science Foundation of Tianjin (18JCQNJC00100, 17JCQNJC00600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxue Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we introduce detailed discretization of first-order and second-order differential operators using finite difference scheme.

The first-order forward and backward difference schemes are first given. Let \(\Omega \rightarrow {\mathbb {R}}^{M\times N}\) denote the two-dimensional grayscale image space with size M and N. The coordinates x and y are oriented along columns and rows, respectively. So the first-order forward differences of u at point (ij) along x and y directions are, respectively,

$$\begin{aligned} \partial _{x}^{+} u_{i,j}=\left\{ \begin{array}{ll} u_{i,j+1} - u_{i,j}&{} \mathrm{if} \ 1\le i \le M, 1 \le j < N,\\ u_{i,1} - u_{i,j}&{} \mathrm{if} \ 1 \le i \le M, j= N. \end{array}\right. \end{aligned}$$
$$\begin{aligned} \partial _{y}^{+}u_{i,j}=\left\{ \begin{array}{ll} u_{i+1,j} - u_{i,j}&{} \mathrm{if} \ 1\le i < M, 1 \le j \le N,\\ u_{1,j} - u_{i,j}&{} \mathrm{if} \ i = M, 1 \le j \le N. \end{array}\right. \end{aligned}$$

The first-order backward differences are, respectively,

$$\begin{aligned} \partial _{x}^{-} u_{i,j}=\left\{ \begin{array}{ll} u_{i,j} - u_{i,j-1}&{} \mathrm{if} \ 1\le i \le M, 1 < j \le N,\\ u_{i,j} - u_{i,N}&{} \mathrm{if} \ 1 \le i \le M, j= 1. \end{array}\right. \end{aligned}$$
$$\begin{aligned}\partial _{y}^{-} u_{i,j}=\left\{ \begin{array}{ll} u_{i,j} - u_{i-1,j}&{} \mathrm{if} \ 1< i \le M, 1 \le j \le N,\\ u_{i,j} - u_{M,j}&{} \mathrm{if} \ i = 1, 1\le j \le N. \end{array}\right. \end{aligned}$$

And the discrete second-order derivatives \(\partial _{x}^{-}\partial _{x}^{+}u, \partial _{x}^{+}\partial _{x}^{-}u, \partial _{y}^{-}\partial _{y}^{+}u\) and \(\partial _{y}^{+}\partial _{y}^{-}u\) at point (ij) can be written by the corresponding compositions of the discrete first-order derivative, as follows

$$\begin{aligned} \begin{aligned} \partial _{x}^{+}\partial _{x}^{-} u_{i,j}&=\left\{ \begin{array}{ll} u_{i,N} - 2u_{i,j} + u_{i,j+1}&{} \mathrm{if} \ 1\le i\le M, j = 1,\\ u_{i,j-1} - 2u_{i,j} + u_{i,j+1}&{} \mathrm{if} \ 1\le i\le M, 1< j< N,\\ u_{i,j-1} - 2u_{i,j} + u_{i,1}&{} \mathrm{if} \ 1 \le i\le M, j = N. \end{array}\right. \\&=\partial _{x}^{-}\partial _{x}^{+} u_{i,j} \\ \partial _{y}^{+}\partial _{y}^{-} u_{i,j}&=\left\{ \begin{array}{ll} u_{M,j} - 2u_{i,j} + u_{i+1,j}&{} \mathrm{if} \ i = 1, 1\le j\le N,\\ u_{i-1,j} - 2u_{i,j} + u_{i+1,j}&{} \mathrm{if} \ 1< i< M, 1 \le j \le N,\\ u_{i-1,j} - 2u_{i,j} + u_{1,j}&{} \mathrm{if} \ i = M, 1 \le j\le N. \end{array}\right. \\&=\partial _{y}^{-}\partial _{y}^{+} u_{i,j} \end{aligned} \end{aligned}$$

Thus, the gradient, symmetrized derivative, divergence and Laplace can be discretized as follows, respectively:

$$\begin{aligned} \nabla u = \left( \partial _{x}^{+}u, \partial _{y}^{+}u \right) , \end{aligned}$$
(30)
$$\begin{aligned} {\mathcal {E}}({\mathbf {p}}) = \begin{pmatrix} \partial _{x}^{-} p_{1}&{}\frac{\partial _{y}^{-}p_{1} + \partial _{x}^{-}p_{2}}{2}\\ \frac{\partial _{y}^{-}p_{1} + \partial _{x}^{-}p_{2}}{2}&{} \partial _{y}^{-}p_{2}, \end{pmatrix} \end{aligned}$$
(31)
$$\begin{aligned} \mathrm {div}({\mathbf {p}}) = \partial _{x}^{-}p_{1} + \partial _{y}^{-}p_{2}, \end{aligned}$$
(32)
$$\begin{aligned} \Delta u_{i,j} = \mathrm {div}(\partial {u_{i,j}})=\partial _{x}^{-}\partial _{x}^{+}u_{i,j} + \partial _{y}^{-}\partial _{y}^{+}u_{i,j}. \end{aligned}$$
(33)

So the \({\mathcal {F}}(G_r)\) and \({\xi }_{r}\) in Eq. (22) can be written as

$$\begin{aligned} \begin{aligned} {\mathcal {F}}(G_r)&= \beta {\mathcal {F}}(i-l^{k}) - \theta _{1}{\mathcal {F}}\{\partial _{x}^{-}({w}_{1i,j}-b_{1i,j}) \\&\quad + \partial _{y}^{-}(w_{2i,j}-b_{2i,j})\}. \end{aligned} \end{aligned}$$
(34)

and

$$\begin{aligned} \begin{aligned} {\xi }_{r}&= \beta - \theta _{1}{\mathcal {F}}(\partial _{x}^{-}\partial _{x}^{+} + \partial _{y}^{-}\partial _{y}^{+}),\\&=\beta - 2\theta _{1}\left( \cos {\frac{2\pi n}{N} + \cos {\frac{2\pi m}{M}}}-2\right) . \end{aligned} \end{aligned}$$
(35)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhang, H. & Liu, L. Total generalized variation-based Retinex image decomposition. Vis Comput 37, 77–93 (2021). https://doi.org/10.1007/s00371-020-01888-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01888-4

Keywords

Navigation