Skip to main content

Advertisement

Log in

Robust and blind image watermarking via circular embedding and bidimensional empirical mode decomposition

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

A Correction to this article was published on 29 July 2020

This article has been updated

Abstract

In this paper, a robust and blind image watermarking algorithm via circular embedding and bidimensional empirical mode decomposition (BEMD) is developed. First, the watermark image is scrambled by Arnold transform to increase the security of the algorithm. Second, the Hilbert curve is adopted to reduce the scrambled 2D watermark image to one-dimensional watermark signal. Third, the host image is decomposed by BEMD to obtain the multi-scale representation in the forms of intrinsic mode functions (IMFs) and a residue. Then, the extreme points of the IMFs are extracted as the embedding locations. Finally, the one-dimensional watermark signal is repeatedly and cyclically embedded in the extreme locations of the first IMF according to the texture masking characteristics of the human visual system, which greatly improves the ability of our algorithm against various attacks. The final watermarked image is reconstructed by combining the modified first IMF and the residual. The watermark can be successfully extracted without resorting to the original host image. Furthermore, image correction can be applied before image watermarking extraction if there are geometric attacks in watermarked image. A large number of experimental results and thorough evaluations confirm that our method can obtain higher imperceptibility and robustness under different types of attacks, and achieve better performance than the current state-of-the-art watermarking algorithms, especially in large-scale cropping attack, JPEG compression, Gaussian noise, sharpening, Gamma correction, scaling, histogram equalization, and rotation attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 29 July 2020

    The publication of this article unfortunately contained mistakes. The affiliation and the biography of Ling Du were not correct. The corrected affiliation and bibliography is given below.

References

  1. Abbas, N.H., Ahmad, S.M.S., Parveen, S., Wan, W.A., Ramli, A.R.B.: Design of high performance copyright protection watermarking based on lifting wavelet transform and bi empirical mode decomposition. Multimed. Tools Appl. 77(19), 24593–24614 (2018)

    Google Scholar 

  2. Abdelouahed, S., Mohamed, K., Hamid, T., Aabdelah, A.: Image watermarking using the empirical mode decomposition. In: 5th International Conference Science Electronics, Tech. Info. Telecom., pp. 22–26 (2009)

  3. Ali, M., Ahn, C.W., Pant, M., Siarry, P.: An image watermarking scheme in wavelet domain with optimized compensation of singular value decomposition via artificial bee colony. Inform. Sci. 301, 44–60 (2015)

    Google Scholar 

  4. Baluja, S.: Hiding images within images. IEEE Trans. Pattern. Anal. Mach. Intell. 42(7), 1685–1687 (2019)

    Google Scholar 

  5. Barni, M., Bartolini, F., Cappellini, V., Piva, A.: A dct-domain system for robust image watermarking. Signal Process. 66(3), 357–372 (1998)

    MATH  Google Scholar 

  6. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Google Scholar 

  7. Bi, N., Sun, Q., Huang, D., Yang, Z., Huang, J.: Robust image watermarking based on multiband wavelets and empirical mode decomposition. IEEE Trans. Image Process. 16(8), 1956–1966 (2007)

    MathSciNet  Google Scholar 

  8. Celik, M.U., Sharma, G., Tekalp, A.M., Saber, E.: Lossless generalized-lsb data embedding. IEEE Trans. Image Process. 14(2), 253–266 (2005)

    Google Scholar 

  9. Chen, B., Coatrieux, G., Chen, G., Coatrieux, J.L., Shu, H.: Full 4-d quaternion discrete fourier transform based watermarking for color images. Digit. Signal Process. 28, 106–119 (2014)

    Google Scholar 

  10. Chu, W.C.: Dct-based image watermarking using subsampling. IEEE Trans. Multimed. 5(1), 34–38 (2003)

    Google Scholar 

  11. Cox, I.J., Miller, M.L.: A review of watermarking and the importance of perceptual modeling. In: Proceedings of Electronic Imaging, pp. 92–99 (1997)

  12. Deepshikha, C., Preeti, G., Gaur, S.B., Anil, G.: Lsb based digital image watermarking for gray scale image. IOSR J. Comput. Eng. 6(1), 36–41 (2012)

    Google Scholar 

  13. Di, C., Yang, X., Wang, X.: A four-stage hybrid model for hydrological time series forecasting. PLoS ONE 9(8), e104–e663 (2014)

    Google Scholar 

  14. Fan, M.Q., Wang, H.X., Li, S.K.: Restudy on svd-based watermarking scheme. Appl. Math. Comput. 203(2), 926–930 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Hamidi, M., Haziti, M.E., Cherifi, H., Hassouni, M.E.: Hybrid blind robust image watermarking technique based on dft-dct and arnold transform. Multimed. Tools Appl. 77(20), 27181–27214 (2018)

    Google Scholar 

  16. Hernandez-Guzman, V., Cruz-Ramos, C., Nakano-Miyatake, M., Perez-Meana, H.: Watermarking algorithm based on the dwt. IEEE Lat. Am. Trans. 4(4), 257–267 (2006)

    Google Scholar 

  17. Hilbert, D.: Über die stetige abbildung einer linie auf ein flächenstück. Math. Ann. 38(3), 459–460 (1891)

    MathSciNet  MATH  Google Scholar 

  18. Hu, J., Wang, X., Qin, H.: Improved, feature-centric emd for 3d surface modeling and processing. Graph. Models 76(5), 340–354 (2014)

    Google Scholar 

  19. Hu, J., Wang, X., Qin, H.: Novel and efficient computation of hilbert huang transform on surfaces. Comput. Aided Geom. Des. 43, 95–108 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Math. Phys. Eng. Sci. 454(1971), 903–995 (1998)

    MathSciNet  MATH  Google Scholar 

  21. Hussein, M., Bairam, M.: A survey study on singular value decomposition and genetic algorithm based on digital watermarking techniques. In: Proceedings of Firs International Conference Computer International Info., pp. 7–16 (2017)

  22. Lai, C.C.: A digital watermarking scheme based on singular value decomposition and tiny genetic algorithm. Digit. Signal Process. 21(4), 522–527 (2011)

    Google Scholar 

  23. Li, C., Zhang, Z., Wang, Y., Ma, B., Huang, D.: Dither modulation of significant amplitude difference for wavelet based robust watermarking. Neurocomputing 166, 404–415 (2015)

    Google Scholar 

  24. Roy, S., Pal, A.K.: A robust blind hybrid image watermarking scheme in rdwt-dct domain using arnold scrambling. Multimed. Tools Appl. 76(3), 3577–3616 (2017)

    Google Scholar 

  25. Sagan, H.: A three-dimensional hilbert curve. Int. J. Math. Educ. Sci. Tech. 24(4), 541–545 (1993)

    MathSciNet  MATH  Google Scholar 

  26. Seyyed, H.S., Amir, H.T., Amir, H.M.: Waca: a new blind robust watermarking method based on arnold cat map and amplified pseudo-noise strings with weak correlation. Multimed. Tools Appl. 78(14), 19163–19179 (2019)

    Google Scholar 

  27. Sharma, J.B., Sharma, K.K., Sahula, V.: Digital image dual watermarking using self-fractional Fourier functions, bivariate empirical mode decomposition and error correcting code. J. Opt. 42(3), 214–227 (2013)

    Google Scholar 

  28. Singh, S.P., Bhatnagar, G.: A new robust watermarking system in integer dct domain. J. Vis. Commun. Image R 53, 86–101 (2018)

    Google Scholar 

  29. Subr, K., Soler, C., Durand, F.: Edge-preserving multiscale image decomposition based on local extrema. ACM Trans. Graph. 28(5), 1471–1479 (2009)

    Google Scholar 

  30. Tao, P., Eskicioglu, A.M.: A method for image recovery in the dft domain. In: 3rd IEEE Cons. Comm. Network. Conf., vol. 2, pp. 1134–1138 (2006)

  31. Torr, P., Zisserman, A.: Mlesac: a new robust estimator with application to estimating image geometry. Comput. Vis. Image Underst. 78(1), 138–156 (2000)

    Google Scholar 

  32. Tsui, T.K., Zhang, X.P., Androutsos, D.: Color image watermarking using multidimensional Fourier transforms. IEEE Trans. Inf. Forensics Secur. 3(1), 16–28 (2008)

    Google Scholar 

  33. Wang, H., Su, Z., Cao, J., Wang, Y., Zhang, H.: Empirical mode decomposition on surfaces. Graph. Models 74(4), 173–183 (2012)

    Google Scholar 

  34. Wang, X., Hu, J., Guo, L., Zhang, D., Qin, H., Hao, A.: Feature-preserving, mesh-free empirical mode decomposition for point clouds and its applications. Comput. Aided Geom. Des. 59, 1–16 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Wang, X., Hu, J., Zhang, D., Guo, L., Qin, H., Hao, A.: Multi-scale geometry detail recovery on surfaces via empirical mode decomposition. Comput. Graph. 70, 118–127 (2018)

    Google Scholar 

  36. Wang, X., Hu, J., Zhang, D., Qin, H.: Efficient emd and hilbert spectra computation for 3d geometry processing and analysis via space-filling curve. Vis. Comput. 31(6), 1135–1145 (2015)

    Google Scholar 

  37. Wang, Y., Doherty, J.F., Van Dyck, R.E.: A wavelet-based watermarking algorithm for ownership verification of digital images. IEEE Trans. Image Process. 11(2), 77–88 (2002)

    Google Scholar 

  38. Xie, X.: Illumination preprocessing for face images based on empirical mode decomposition. Signal Process. 103, 250–257 (2014)

    Google Scholar 

  39. Zhang, D., Wang, X., Hu, J., Qin, H.: Interactive modeling of complex geometric details based on empirical mode decomposition for multi-scale 3d shapes. Comput. Aided Des. 87, 1–10 (2017)

    Google Scholar 

Download references

Funding

This research is supported in part by National Science Foundation of USA (IIS-1715985 and IIS-1812606), National Natural Science Foundation of China (No. 61672149, 61602341, 61672077, 61532002, 61602344, 61802279, 61872347); Natural Science Foundation of Tianjin (18JCQNJC00100). The Science & Technology Development Fund of Tianjin Education Commission for Higher Education (Grant No. 2018KJ222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Hu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Hu, K., Hu, J. et al. Robust and blind image watermarking via circular embedding and bidimensional empirical mode decomposition. Vis Comput 36, 2201–2214 (2020). https://doi.org/10.1007/s00371-020-01909-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01909-2

Keywords

Navigation