Skip to main content
Log in

3D skull and face similarity measurements based on a harmonic wave kernel signature

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Research regarding the similarity measurements of 3D craniofacial models (including 3D skull and face models) is an important research direction in fields such as archaeology, forensic science, and anthropology and represents a meaningful and challenging task. Its major challenges are the fact that 3D skulls are geometric models with multiple holes and complex topologies, there are facial expression changes on the 3D faces. Therefore, the general 3D shape similarity measurements, which are sensitive to boundaries and expression changes, make it impossible to simultaneously measure skull and face similarity. In this paper, we define a 3D signature to describe the pure intrinsic structure and distinguish the similar basic shape and complex topology of 3D skulls and faces: the harmonic wave kernel signature (HWKS). The HWKS is a point descriptor involving the Laplace–Beltrami operator, which is able to effectively extract geometrical and topological information from 3D skulls and faces. Based on the HWKS, we provide an effective pipeline for 3D skull and face similarity measurement by calculating the cosine distance between the HWKS values of 3D skulls and faces. By making comparisons with the wave kernel signature, the HWKS simultaneously describes both local and global properties of a shape. Results from a number of experiments have already shown that our framework is suitable for both measure 3D skull similarity and face similarity, and more importantly, measuring skull similarity and face similarity are two independent processes although using the same framework. By using the same measurement method for 3D skull similarity and face similarity, we observe an effective craniofacial relationship under unified metrics: The change rate of skull similarity is generally consistent with the corresponding face similarity, indicating the correlation between the shape of the 3D skull and its corresponding 3D face shape. And our experimental results show the rationality and effectiveness of this method, which refers to the previous researchers measure the similarity of the reconstructed face from the original skull to reflect the similarity of the original skull.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Pei, Y., Zha, H., Yuan, Z.: The craniofacial reconstruction from the local structural diversity of skulls. Comput. Graphics Forum 27(7), 1711–1718 (2008)

    Article  Google Scholar 

  2. Giurazza, F., Del Vescovo, R., Schena, E., Battisti, S., Cazzato, R.L., Grasso, F.R., Silvestri, S., Denaro, V., Zobel, B.B.: Determination of stature from skeletal and skull measurements by ct scan evaluation. Forensic Sci. Int. 222(1–3), 398e1 (2012)

    Google Scholar 

  3. Spradley, M.K., Jantz, R.L.: Sex estimation in forensic anthropology: skull versus postcranial elements. J. Forensic Sci. 56(2), 289–296 (2011)

    Article  Google Scholar 

  4. Damas, S., Cordón, O., Ibáñez, O., Santamaría, J., Alemán, I., Botella, M., Navarro, F.: Forensic identification by computer-aided craniofacial superimposition: a survey. ACM Comput. Surv. (CSUR) 43(4), 27 (2011)

    Article  Google Scholar 

  5. Fenton, T.W., Heard, A.N., Sauer, N.J.: Skull-photo superimposition and border deaths: identification through exclusion and the failure to exclude. J. Forensic Sci. 53(1), 34–40 (2008)

    Article  Google Scholar 

  6. Shrimpton, S., Daniels, K., De Greef, S., Tilotta, F., Willems, G., Vandermeulen, D., Suetens, P., Claes, P.: A spatially-dense regression study of facial form and tissue depth: towards an interactive tool for craniofacial reconstruction. Forensic Sci. Int. 234, 103–110 (2014)

    Article  Google Scholar 

  7. Xia, J., Ip, H.H., Samman, N., Wang, D., Kot, C.S., Yeung, R.W., Tideman, H.: Computer-assisted three-dimensional surgical planning and simulation: 3D virtual osteotomy. Int. J. Oral Maxillofac. Surg. 29(1), 11–17 (2000)

    Article  Google Scholar 

  8. Zhao, L., Patel, P.K., Cohen, M.: Application of virtual surgical planning with computer assisted design and manufacturing technology to cranio-maxillofacial surgery. Arch. Plast. Surg. 39(4), 309 (2012)

    Article  Google Scholar 

  9. Zhang, L., Razdan, A., Farin, G., Femiani, J., Bae, M., Lockwood, C.: 3D face authentication and recognition based on bilateral symmetry analysis. Vis. Comput. 22(1), 43–55 (2006)

    Article  Google Scholar 

  10. Lei, Y., Bennamoun, M., Hayat, M., Guo, Y.: An efficient 3d face recognition approach using local geometrical signatures. Pattern Recognit. 47(2), 509–524 (2014)

    Article  Google Scholar 

  11. Emambakhsh, M., Evans, A.: Nasal patches and curves for expression-robust 3d face recognition. IEEE tlransactions on pattern analysis and machine intelligence 39(5), 995–1007 (2016)

    Article  Google Scholar 

  12. Hou, X.-N., Ding, S.-H., Ma, L.-Z., Wang, C.-J., Li, J.-L., Huang, F.-Y.: Similarity metric learning for face verification using sigmoid decision function. Vis. Comput. 32(4), 479–490 (2016)

    Article  Google Scholar 

  13. Soltanpour, S., Boufama, B., Wu, Q.J.: A survey of local feature methods for 3D face recognition. Pattern Recognit. 72, 391–406 (2017)

    Article  Google Scholar 

  14. Zhao, J.-L., Wu, Z.-K., Pan, Z.-K., Duan, F.-Q., Li, J.-H., Lv, Z.-H., Wang, K., Chen, Y.-C.: 3D face similarity measure by fréchet distances of geodesics. J. Comput. Sci. Technol. 33(1), 207–222 (2018)

    Article  Google Scholar 

  15. Lv, C., Wu, Z., Wang, X., Zhou, M., Toh, K.-A.: Nasal similarity measure of 3D faces based on curve shape space. Pattern Recognit. 88, 458–469 (2019)

    Article  Google Scholar 

  16. Jin, W.-X., Li, K., Geng, G.-H., Liu, L.-C.: Similarity measurement method of skull and craniofacial data. Appl. Res. Comput. 10, 61 (2013)

    Google Scholar 

  17. Mendonca, D.A., Naidoo, S.D., Skolnick, G., Skladman, R., Woo, A.S.: Comparative study of cranial anthropometric measurement by traditional calipers to computed tomography and three-dimensional photogrammetry. J. Craniofac. Surg. 24(4), 1106–1110 (2013)

    Article  Google Scholar 

  18. Pei, Y., Kou, L., Zha, H., Anatomical structure similarity estimation by random forest. In: IEEE International Conference on Image Processing (ICIP). IEEE, pp. 2941–2945 (2016)

  19. Quatrehomme, G., Cotin, S., Subsol, G., Delingette, H., Garidel, Y., Grévin, G., Fidrich, M., Bailet, P., Ollier, A.: A fully three-dimensional method for facial reconstruction based on deformable models. J. Forensic Sci. 42(4), 649–652 (1997)

    Article  Google Scholar 

  20. Vanezis, P., Vanezis, M., McCombe, G., Niblett, T.: Facial reconstruction using 3-d computer graphics. Forensic science international 108(2), 81–95 (2000)

    Article  Google Scholar 

  21. Kermi, A., Laskri, M. T.: A 3D deformable model constrained by anthropometric knowledge for computerized facial reconstructions. In: 2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA), IEEE, 2012, pp. 924–929

  22. Berar, M., Tilotta, F.M., Glaunes, J.A., Rozenholc, Y.: Craniofacial reconstruction as a prediction problem using a latent root regression model. Forensic Sci. Int. 210(1–3), 228–236 (2011)

    Article  Google Scholar 

  23. Mansour, R.F.: Evolutionary computing enriched ridge regression model for craniofacial reconstruction. In: Multimedia Tools and Applications, pp. 1–18 (2017)

  24. Duan, F., Yang, Y., Li, Y., Tian, Y., Lu, K., Wu, Z., Zhou, M.: Skull identification via correlation measure between skull and face shape. IEEE Trans. Inf. Forensics Secur. 9(8), 1322–1332 (2014)

    Article  Google Scholar 

  25. Shui, W., Zhou, M., Maddock, S., He, T., Wang, X., Deng, Q.: A pca-based method for determining craniofacial relationship and sexual dimorphism of facial shapes. Comput. Biol. Med. 90, 33–49 (2017)

    Article  Google Scholar 

  26. Berar, M., Desvignes, M., Bailly, G., Payan, Y.: 3D statistical facial reconstruction. In: ISPA 2005, Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005. IEEE, pp. 365–370 (2005)

  27. Suetens, P., Willems, G., Vandermeulen, D., De Greef, S., Claes, P.: Statistically deformable face models for cranio–facial reconstruction. J. Comput. Inf. Technol. 14(1), 21–30 (2006)

    Article  Google Scholar 

  28. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Three-dimensional face recognition. Int. J. Comput. Vis. 64(1), 5–30 (2005)

    Article  Google Scholar 

  29. Kakadiaris, I.A., Passalis, G., Toderici, G., Murtuza, M.N., Lu, Y., Karampatziakis, N., Theoharis, T.: Three-dimensional face recognition in the presence of facial expressions: an annotated deformable model approach. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 640–649 (2007)

    Article  Google Scholar 

  30. Smeets, D., Fabry, T., Hermans, J., Vandermeulen, D., Suetens, P.: Isometric deformation modeling using singular value decomposition for 3D expression-invariant face recognition. In: 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems, IEEE, pp. 1–6 (2009)

  31. Hu, J., Hua, J.: Salient spectral geometric features for shape matching and retrieval. Vis. Comput. 25(5-7):667–675 (2009)

  32. Rustamov, R. M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of the fifth Eurographics Symposium on Geometry Processing, Eurographics Association, pp. 225–233 (2007)

  33. Ovsjanikov, M., Sun, J., Guibas, L.: Global intrinsic symmetries of shapes. In: Computer Graphics Forum, Vol. 27. Wiley, New York, pp. 1341–1348 (2008)

  34. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Computer Graphics Forum, Vol. 28. Wiley, New York, pp. 1383–1392 (2009)

  35. Aubry, M., Schlickewei, U., Cremers, D., The wave kernel signature: a quantum mechanical approach to shape analysis. In: IEEE International Conference on Computer Vision Workshops (ICCV workshops). IEEE 2011, pp. 1626–1633 (2011)

  36. Melzi, S., Ren, J., Rodolà, E., Sharma, A., Wonka, P., Ovsjanikov, M.: Zoomout: spectral upsampling for efficient shape correspondence. ACM Trans. Graph. (TOG) 38(6), 155 (2019)

    Article  Google Scholar 

  37. Xu, G.: Discrete Laplace–Beltrami operators and their convergence. Comput. Aid. Geom. Des. 21(8), 767–784 (2004)

    Article  MathSciNet  Google Scholar 

  38. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. (TOG) 31(4), 30 (2012)

    Article  Google Scholar 

  39. Zhang, D., Wu, Z., Wang, X., Lv, C., Zhou, M.: Harmonic wave kernel signature for three-dimensional skull similarity measurements. In: IEEE Conference on Cyberworlds (CW), pp. 77–84 (2019)

Download references

Acknowledgements

The authors like to thank the support of National Key Cooperation between the BRICS Program of China (No.2017YFE0100500); National Key R&D Program of China (No.2017YFB1002604, No.2017YFB1402105, No.2017YFB1002804); Beijing Natural Science Foundation of China (No. 4172033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingce Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Wu, Z., Wang, X. et al. 3D skull and face similarity measurements based on a harmonic wave kernel signature. Vis Comput 37, 749–764 (2021). https://doi.org/10.1007/s00371-020-01946-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01946-x

Keywords

Navigation