Skip to main content
Log in

Modelling distracted agents in crowd simulations

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Multi-agent simulations can provide useful insights into the movement of pedestrians in arbitrary environments for predictive planning and analysis. The fidelity of such agents is important for the validity of the associated analyses. Current methods tend to employ agent models that are largely homogeneous in both physical abilities and behaviours. However, actual pedestrians exhibit a wide range of locomotion abilities and behaviours. In this work, we take a first step towards identifying and modelling distracted behaviours, such as walking and texting on a cell phone. Our models relate reported changes to the locomotion patterns and sensory abilities of distracted pedestrians to the corresponding parameters of a commonly used crowd simulation steering approach. We demonstrate experimentally that accounting for even a few of these behaviours significantly alters the flow patterns of the simulated agents. This impact affects overall crowd behaviour and is reflected in several crowd statistics including flow rate, effort, and kinetic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Agostini, V., Fermo, F.L., Massazza, G., Knaflitz, M.: Does texting while walking really affect gait in young adults? J. Neuroeng. Rehabil. 12(1), 86 (2015)

    Article  Google Scholar 

  2. Allbeck, J.M., Badler, N.I.: Creating crowd variation with the ocean personality model (2008)

  3. Bailly, G., Raidt, S., Elisei, F.: Gaze, conversational agents and face-to-face communication. Speech Commun. 52(6), 598–612 (2010)

    Article  Google Scholar 

  4. Cha, J., Kim, H., Park, J., Song, C.: Effects of mobile texting and gaming on gait with obstructions under different illumination levels. Phys. Ther. Rehabil. Sci. 4(1), 32–37 (2015)

    Article  Google Scholar 

  5. Curtis, S., Guy, S.J., Zafar, B., Manocha, D.: Virtual tawaf: a case study in simulating the behavior of dense, heterogeneous crowds. In: IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 128–135. IEEE (2011)

  6. Durupinar, F., Allbeck, J., Pelechano, N., Badler, N.: Creating crowd variation with the ocean personality model. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 3, pp. 1217–1220. International Foundation for Autonomous Agents and Multiagent Systems (2008)

  7. Funge, J., Tu, X., Terzopoulos, D.: Cognitive modeling: knowledge, reasoning and planning for intelligent characters (1999)

  8. Grillon, H., Thalmann, D.: Simulating gaze attention behaviors for crowds. Comput. Anim. Virtual Worlds 20(2–3), 111–119 (2009)

    Article  Google Scholar 

  9. Guy, S.J., Chhugani, J., Curtis, S., Dubey, P., Lin, M., Manocha, D.: Pledestrians: a least-effort approach to crowd simulation. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 119–128. Eurographics Association (2010)

  10. Guy, S.J., Kim, S., Lin, M.C., Manocha, D.: Simulating heterogeneous crowd behaviors using personality trait theory

  11. Haga, S., Sano, A., Sekine, Y., Sato, H., Yamaguchi, S., Masuda, K.: Effects of using a smart phone on pedestrians’ attention and walking. Procedia Manuf. 3, 2574–2580 (2015)

    Article  Google Scholar 

  12. Haworth, B., Usman, M., Berseth, G., Kapadia, M., Faloutsos, P.: On density-flow relationships during crowd evacuation. Comput. Anim. Virtual Worlds 28(3–4), e1783 (2017). https://doi.org/10.1002/cav.1783

    Article  Google Scholar 

  13. Haworth, M.B.: Biomechanical locomotion heterogeneity in synthetic crowds. Ph.D. thesis, York University, Toronto, Canada (2019)

  14. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)

    Article  Google Scholar 

  15. Hill, R.: Modeling perceptual attention in virtual humans. In: Proceedings of the 8th Conference on Computer Generated Forces and Behavioral Representation, pp. 563–573. Citeseer (1999)

  16. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 11, 1254–1259 (1998)

    Article  Google Scholar 

  17. Jeon, S., Kim, C., Song, S., Lee, G.: Changes in gait pattern during multitask using smartphones. Work 53(2), 241–247 (2016)

    Article  Google Scholar 

  18. Ju, E., Choi, M.G., Park, M., Lee, J., Lee, K.H., Takahashi, S.: Morphable crowds. In: ACM Transactions on Graphics (TOG), vol. 29, p. 140. ACM (2010)

  19. Kapadia, M., Falk, J., Zünd, F., Marti, M., Sumner, R.W., Gross, M.: Computer-assisted authoring of interactive narratives. In: Proceedings of the 19th Symposium on Interactive 3D Graphics and Games, pp. 85–92 (2015)

  20. Kapadia, M., Pelechano, N., Allbeck, J., Badler, N.: Virtual Crowds: Steps Toward Behavioral Realism. Morgan & Claypool Publishers, San Rafael (2015)

    Google Scholar 

  21. Karamouzas, I., Heil, P., Van Beek, P., Overmars, M.H.: A predictive collision avoidance model for pedestrian simulation. In: International Workshop on Motion in Games, pp. 41–52. Springer (2009)

  22. Khullar, S.C., Badler, N.I.: Where to look? Automating attending behaviors of virtual human characters. Auton. Agents Multi Agent Syst. 4(1–2), 9–23 (2001)

    Article  Google Scholar 

  23. Kokkinara, E., Oyekoya, O., Steed, A.: Modelling selective visual attention for autonomous virtual characters. Comput. Anim. Virtual Worlds 22(4), 361–369 (2011)

    Article  Google Scholar 

  24. Kuffner, J.J., Latombe, J.C.: Fast synthetic vision, memory, and learning models for virtual humans. In: Proceedings Computer Animation, pp. 118–127. IEEE (1999)

  25. Lamberg, E.M., Muratori, L.M.: Cell phones change the way we walk. Gait Posture 35(4), 688–690 (2012)

    Article  Google Scholar 

  26. Lee, K.H., Choi, M.G., Hong, Q., Lee, J.: Group behavior from video: a data-driven approach to crowd simulation. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 109–118. Eurographics Association (2007)

  27. Licence, S., Smith, R., McGuigan, M.P., Earnest, C.P.: Gait pattern alterations during walking, texting and walking and texting during cognitively distractive tasks while negotiating common pedestrian obstacles. PLoS ONE 10(7), e0133281 (2015)

    Article  Google Scholar 

  28. Maples, W., DeRosier, W., Hoenes, R., Bendure, R., Moore, S.: The effects of cell phone use on peripheral vision. Optom. J. Am. Optom. Assoc. 79(1), 36–42 (2008)

    Google Scholar 

  29. Narang, S., Best, A., Randhavane, T., Shapiro, A., Manocha, D.: PedVR: simulating gaze-based interactions between a real user and virtual crowds. In: Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology, pp. 91–100. ACM (2016)

  30. Niederer, D., Bumann, A., Mühlhauser, Y., Schmitt, M., Wess, K., Engeroff, T., Wilke, J., Vogt, L., Banzer, W.: Specific smartphone usage and cognitive performance affect gait characteristics during free-living and treadmill walking. Gait Posture 62, 415–421 (2018)

    Article  Google Scholar 

  31. Patten, C.J., Kircher, A., Östlund, J., Nilsson, L.: Using mobile telephones: cognitive workload and attention resource allocation. Accid. Anal. Prev. 36(3), 341–350 (2004)

    Article  Google Scholar 

  32. Pelechano, N., O’Brien, K., Silverman, B., Badler, N.: Crowd simulation incorporating agent psychological models, roles and communication. Technical report. Center for Human Modeling and Simulation, University of Pennsylvania, Philadelphia (2005)

  33. Peters, C., O’Sullivan, C.: Synthetic vision and memory for autonomous virtual humans. In: Computer Graphics Forum, vol. 21, pp. 743–752. Wiley Online Library (2002)

  34. Pizzamiglio, S., Naeem, U., Abdalla, H., Turner, D.L.: Neural correlates of single-and dual-task walking in the real world. Front. Hum. Neurosci. 11, 460 (2017)

    Article  Google Scholar 

  35. Plummer, P., Apple, S., Dowd, C., Keith, E.: Texting and walking: effect of environmental setting and task prioritization on dual-task interference in healthy young adults. Gait Posture 41(1), 46–51 (2015)

    Article  Google Scholar 

  36. Plummer-D’Amato, P., Brancato, B., Dantowitz, M., Birken, S., Bonke, C., Furey, E.: Effects of gait and cognitive task difficulty on cognitive-motor interference in aging. J. Aging Res. 2012 (2012)

  37. Prupetkaew, P., Lugade, V., Kamnardsiri, T., Silsupadol, P.: Cognitive and visual demands, but not gross motor demand, of concurrent smartphone use affect laboratory and free-living gait among young and older adults. Gait Posture 68, 30–36 (2019)

    Article  Google Scholar 

  38. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. SIGGRAPH Comput. Graph. 21(4), 25–34 (1987)

    Article  Google Scholar 

  39. Schabrun, S.M., van den Hoorn, W., Moorcroft, A., Greenland, C., Hodges, P.W.: Texting and walking: strategies for postural control and implications for safety. PLoS ONE 9(1), e84312 (2014)

    Article  Google Scholar 

  40. Tian, Y., Huang, Y., He, J., Wei, K.: What affects gait performance during walking while texting? A comparison of motor, visual and cognitive factors. Ergonomics 61(11), 1507–1518 (2018). https://doi.org/10.1080/00140139.2018.1493153

    Article  Google Scholar 

  41. Xue, Z., Dong, Q., Fan, X., Jin, Q., Jian, H., Liu, J.: Fuzzy logic-based model that incorporates personality traits for heterogeneous pedestrians. Symmetry 9(10), 239 (2017)

    Article  Google Scholar 

  42. Yoshiki, S., Tatsumi, H., Tsutsumi, K., Miyazaki, T., Fujiki, T.: Effects of smartphone use on behavior while walking. Urban Reg. Plan. Rev. 4, 138–150 (2017)

    Google Scholar 

  43. Yu, K.H., Shim, J.H., Choung, S.D., Jeon, H.S.: Effect of using a cell phone on gait parameters in healthy young adults: Texting and texting while listening to music. J. Korean Soc. Phys. Med. 10(4), 25–31 (2015)

    Article  Google Scholar 

  44. Yu, Q., Terzopoulos, D.: A decision network framework for the behavioral animation of virtual humans. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 119–128. Eurographics Association (2007)

  45. Zhang, X., Schaumann, D., Haworth, B., Faloutsos, P., Kapadia, M.: Multi-constrained authoring of occupant behavior narratives in architectural design. In: Proceedings of SimAUD (2019)

  46. Zheng, L., Qin, D., Cheng, Y., Wang, L., Li, L.: Simulating heterogeneous crowds from a physiological perspective. Neurocomputing 172, 180–188 (2016)

    Article  Google Scholar 

Download references

Funding

Funding was provided by Ontario Research Foundation (Grant No. RE08-054) and National Science Foundation (Grant Nos. IIS-1703883, S&AS-1723869).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa Kremer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Anonymity

Grants are not listed yet for anonymity reasons.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kremer, M., Haworth, B., Kapadia, M. et al. Modelling distracted agents in crowd simulations. Vis Comput 37, 107–118 (2021). https://doi.org/10.1007/s00371-020-01969-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01969-4

Keywords

Navigation