Skip to main content
Log in

Visible watermarking in document images using two-stage fuzzy inference system

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The key problem of visible watermarking is how to balance the watermark visibility, the security and the quality of marked image. In this paper, an adaptive visible watermarking scheme in document images using two-stage Mamdani fuzzy inference system (FIS) is presented. Firstly, four attribute parameters of document images including the neighborhood gray-scale value (G), skewness (Sk), entropy value (En) and standard deviation (Std) are defined as visible watermark embedding criteria. Secondly, the FIS1 and FIS2 are designed with different input and output parameters to get the adaptive intensity factors. In order to avoid the visible watermark being removed by the binary removal attack, the gray-scale uniform distribution method is used to remove the peak of the probability logarithmic histogram after the FIS1 stage. Finally, according to the results of FIS2 stage, the change of histogram is not obvious. To evaluate and analyze the performance of this scheme, the proposed scheme is compared with other previous visible watermarking schemes, and experiment results show that the presented one has better visual effect and less distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahmadi, S.B.B., Zhang, G., Wei, S., Lynda, B.: An intelligent and blind image watermarking scheme based on hybrid svd transforms using human visual system characteristics. Vis. Comput. 3, 1–25 (2020)

    Google Scholar 

  2. Aliev, R., Tserkovny, A.: Systemic approach to fuzzy logic formalization for approximate reasoning. Inf. Sci. 181(6), 1045–1059 (2011)

    Article  MathSciNet  Google Scholar 

  3. Chen, C.C., Tsai, Y.H., Yeh, H.C.: Difference-expansion based reversible and visible image watermarking scheme. Multimed. Tools Appl. 76(6), 8497–8516 (2017)

    Article  Google Scholar 

  4. Chetan, K.R., Nirmala, S.: An efficient and secure robust watermarking scheme for document images using integer wavelets and block coding of binary watermarks. J. Inf. Secur. Appl. 24, 13–24 (2015)

    Google Scholar 

  5. Daraee, F., Mozaffari, S.: Watermarking in binary document images using fractal codes. Pattern Recogn. Lett. 35(1), 120–129 (2014)

    Article  Google Scholar 

  6. Das, A.: Guide to Signals and Patterns in Image Processing. Wavelets: Multiresolution Image Processing. Springer, Berlin (2015)

    Google Scholar 

  7. Deeba, F., Kun, S., Dharejo, F.A., Zhou, Y.: Lossless digital image watermarking in sparse domain by using k-singular value decomposition algorithm. IET Image Process. 14(6), 1005–1014 (2020)

    Article  Google Scholar 

  8. Ernawan, F., Kabir, M.N.: A block-based rdwt-svd image watermarking method using human visual system characteristics. Vis. Comput. 36(1), 19–37 (2020)

    Article  Google Scholar 

  9. Fragoso-Navarro, E., Cedillo-Hernandez, M., Nakano-Miyatake, M., Cedillo-Hernandez, A., Perez-Meana, H.M.: Visible watermarking assessment metrics based on just noticeable distortion. IEEE Access (2018). https://doi.org/10.1109/ACCESS.2018.2883322

    Article  Google Scholar 

  10. Ghadi, M., Laouamer, L., Nana, L., Pascu, A.: A blind spatial domain-based image watermarking using texture analysis and association rules mining. Multimed. Tools Appl. 78(12), 15705–15750 (2019)

    Article  Google Scholar 

  11. Horng, S.J., Rosiyadi, D., Fan, P., Xian, W.: An adaptive watermarking scheme for e-government document images. Multimed. Tools Appl. 72(3), 3085–3103 (2014)

    Article  Google Scholar 

  12. Hu, Y., Jeon, B.: Reversible visible watermarking and lossless recovery of original images. IEEE Trans Circuits Syst. Video Technol. 16, 1423–1429 (2006)

    Article  Google Scholar 

  13. Jagadeesh, B., Kumar, P.R., Reddy, P.C.: Robust digital image watermarking based on fuzzy inference system and back propagation neural networks using dct. Soft. Comput. 20(9), 3679–3686 (2016)

    Article  Google Scholar 

  14. Kannammal, A., Rani, S.S.: Two level security for medical images using watermarking/encryption algorithms. Int. J. Imaging Syst. Technol. 24(1), 111–120 (2014)

    Article  Google Scholar 

  15. Kapoor, A., Biswas, K.K., Hanmandlu, M.: An evolutionary learning based fuzzy theoretic approach for salient object detection. Vis. Comput. (2016). https://doi.org/10.1007/s00371-016-1216-1

    Article  Google Scholar 

  16. Khosravanian, A., Rahmanimanesh, M., Keshavarzi, P., Mozaffari, S.: Fuzzy local intensity clustering (flic) model for automatic medical image segmentation. Vis. Comput. (2020). https://doi.org/10.1007/s00371-020-01861-1

    Article  Google Scholar 

  17. Li, X., Shen, H., Zhang, L., Zhang, H., Yuan, Q., Yang, G.: Recovering quantitative remote sensing products contaminated by thick clouds and shadows using multitemporal dictionary learning. IEEE Trans. Geosci. Remote Sens. 52(11), 7086–7098 (2014)

    Article  Google Scholar 

  18. Lin, Y.K., Yang, C.H., Tsai, J.T.: More secure lossless visible watermarking by dct. Multimed. Tools Appl. 77(3), 1–23 (2017)

    Google Scholar 

  19. Liu, L., Chen, S., Chen, X., Wang, T., Zhang, L.: Fuzzy weighted sparse reconstruction error-steered semi-supervised learning for face recognition. Vis. Comput. (2019). https://doi.org/10.1007/s00371-019-01746-y

    Article  Google Scholar 

  20. Liu, T.Y., Tsai, W.H.: Generic lossless visible watermarking—a new approach. IEEE Trans. Image Process. 19(5), 1224–1235 (2010)

    Article  MathSciNet  Google Scholar 

  21. Loganathan, A., Kaliyaperumal, G.: An adaptive hvs based video watermarking scheme for multiple watermarks using bam neural networks and fuzzy inference system. Expert Syst. Appl. 63, 412–434 (2016)

    Article  Google Scholar 

  22. Lu, H., Kot, A., Shi, Y.Q.: Distance-reciprocal distortion measure for binary document images. IEEE Signal Process. Lett. 11(2), 228–231 (2004)

    Article  Google Scholar 

  23. MahmoumGonbadi, A., Katebi, Y., Doniavi, A.: A generic two-stage fuzzy inference system for dynamic prioritization of customers. Expert Syst. Appl. 131, 240–253 (2019)

    Article  Google Scholar 

  24. Mohammad, N., Sun, X., Yang, H., Yin, J., Jiang, M.: Lossless visible watermarking based on adaptive circular shift operation for btc-compressed images. Multimed. Tools Appl. 76(11), 1–13 (2016)

    Google Scholar 

  25. Mortezaei, R., Moghaddam, M.E.: A new lossless watermarking scheme based on fuzzy integral and dct domain. In: International Conference on Electronics and Information Engineering, pp. 527–531 (2010)

  26. Motwani, M.C., Harris Jr., F.C.H.: Fuzzy perceptual watermarking for ownership verification. In: International Conference on Image Processing, pp. 321–325 (2009)

  27. Papakostas, G.A., Tsougenis, E.D., Koulouriotis, D.E.: Fuzzy knowledge-based adaptive image watermarking by the method of moments. Complex Intell. Syst. 2, 205–220 (2016)

    Article  Google Scholar 

  28. Perfilieva, I.: Fuzzy transforms: theory and applications. Fuzzy Set Syst. 157(8), 993–1023 (2006)

    Article  MathSciNet  Google Scholar 

  29. Rajpal, A., Mishra, A., Bala, R.: A novel fuzzy frame selection based watermarking scheme for mpeg-4 videos using bi-directional extreme learning machine. Appl. Soft Comput. 74, 603–620 (2018)

    Article  Google Scholar 

  30. Sakr, N., Zhao, J., Groza, V.: A dynamic fuzzy logic approach to adaptive HVS-based watermarking. In: IEEE International Workshop on Haptic Audio Visual Environments Their Applications, pp. 121–126 (2005)

  31. Sameh-Oueslati, A.C.A., Solaiman, B.: A fuzzy watermarking approach based on the human visual system. Int. J. Image Process. 3, 218–231 (2010)

    Google Scholar 

  32. Su, Q., Chen, B.: Robust color image watermarking technique in the spatial domain. Soft Comput. 22(1), 91–106 (2017)

    Article  MathSciNet  Google Scholar 

  33. Tan, L., Hu, K., Zhou, X., Chen, R., Jiang, W.: Print-scan invariant text image watermarking for hardcopy document authentication. Multimed. Tools Appl. 78(10), 13189–13211 (2019)

    Article  Google Scholar 

  34. Xu, J., Mao, X., Jin, X., Jaffer, A., Lu, S., Li, L., Toyoura, M.: Hidden message in a deformation-based texture. Vis. Comput. 31(12), 1653–1669 (2015)

    Article  Google Scholar 

  35. Yao, Y., Zhang, W., Wang, H., Zhou, H., Yu, N.: Content-adaptive reversible visible watermarking in encrypted images. Signal Process. 164, 386–401 (2019)

    Article  Google Scholar 

  36. Ying, Y., Sun, X., Yang, H., Li, C.T., Rong, X.: A contrast-sensitive reversible visible image watermarking technique. IEEE Trans. Circuits Syst. Video Technol. 19(5), 656–667 (2009)

    Article  Google Scholar 

  37. Youssef, S.M., ElFarag, A.A., Ghatwary, N.M.: Adaptive video watermarking integrating a fuzzy wavelet-based human visual system perceptual model. Multimed. Tools Appl. 73(3), 1545–1573 (2014)

    Article  Google Scholar 

  38. Yuan, Z., Su, Q., Liu, D., Zhang, X.: A blind image watermarking scheme combining spatial domain and frequency domain. Vis. Comput. (2020). https://doi.org/10.1007/s00371-020-01945-y

    Article  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant Nos. 61763044 and 61861040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Z., Qin, N. & Zhang, G. Visible watermarking in document images using two-stage fuzzy inference system. Vis Comput 38, 707–718 (2022). https://doi.org/10.1007/s00371-020-02045-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-02045-7

Keywords

Navigation