Skip to main content
Log in

An efficient FCM-based method for image refinement segmentation

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The conventional fuzzy c-means clustering (FCM) algorithm is sensitive to noise because no spatial information is taken into account. Many related algorithms reduce the influence of noise by adding local information to the objective function. However, there are still many problems, such as poor edge-preserving and anti-noise performance. This paper proposes an FCM-based method for image refinement segmentation to address the above problems effectively. We first take advantage of the pre-classification results of image sub-blocks as a new metric to measure the similarity of pixels and then combine the grayscale and spatial features of the local windows to vote and refine on these initial clustering results, which optimize the classification of pixels. Compared with existing algorithms, our algorithm can correct the misclassified pixels in the global segmentation and reserve image edge better. In addition, it is efficient for noisy image segmentation, which can maximize the recognition of noise and eliminate outliers. Experiments on both synthetic images and real-world images demonstrate the effectiveness and accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Ming, L.: Image segmentation algorithm research and improvement. In: 2010 3rd International Conference on Advanced Computer theory and Engineering (ICACTE), vol. 5, pp. V5–211 (2010)

  2. Bezdek, J.C.: A convergence theorem for the fuzzy isodata clustering algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2(1), 1–8 (1980)

    Article  Google Scholar 

  3. Bezdek, J.C., Hall, L.O., Clarke, L.P.: Review of MR image segmentation techniques using pattern recognition. Med. Phys. 20(4), 1033–1048 (1993)

    Article  Google Scholar 

  4. Chien, S.-Y., Ma, S.-Y., Chen, L.-G.: Efficient moving object segmentation algorithm using background registration technique. IEEE Trans. Circuits Syst. Video Technol. 12(7), 577–586 (2002)

    Article  Google Scholar 

  5. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  6. Zhu, S.C., Yuille, A.: Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(9), 884–900 (1996)

    Article  Google Scholar 

  7. Yao, J., Huimin, Y., Roland, H.: A new sparse representation-based object segmentation framework. Vis. Comput. 33(2), 179–192 (2017)

    Article  Google Scholar 

  8. Qian, X., Li, X., Zhang, C.: Weighted superpixel segmentation. Vis. Comput. 35(6–8), 985–996 (2019)

    Article  Google Scholar 

  9. Zhang, Y., Guo, Q., Zhang, C.: Simple and fast image superpixels generation with color and boundary probability. Vis. Comput. (11), 1–11 (2020)

  10. Grau, V., Mewes, A.U.J., Alcaniz, M., Kikinis, R., Warfield, S.K.: Improved watershed transform for medical image segmentation using prior information. IEEE Trans. Med. Imaging 23(4), 447–458 (2004)

    Article  Google Scholar 

  11. Senthilkumaran, N., Rajesh, R.: A study on edge detection methods for image segmentation. In: Proceedings of the International Conference on Mathematics and Computer Science (ICMCS-2009), vol. 1, pp. 255–259 (2009)

  12. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. In: Proceedings of the Seventh IEEE International Conference on Computer Vision vol. 1, pp. 377–384 (1999)

  13. Shen, D., Ip, H.H.S.: A Hopfield neural network for adaptive image segmentation: an active surface paradigm. Pattern Recognit. Lett. 18(1), 37–48 (1997)

    Article  Google Scholar 

  14. Huang, L., Liu, F.: Retinal vessel segmentation using simple SPCNN model and line connector. Vis. Comput. 2, 1–14 (2020)

    Google Scholar 

  15. Bi, L., Feng, D., Kim, J.: Dual-path adversarial learning for fully convolutional network (FCN)-based medical image segmentation. Vis. Comput. 34(6–8), 1–10 (2018)

    Google Scholar 

  16. Xiao, C., Gan, J., Hu, X.: Fast level set image and video segmentation using new evolution indicator operators. Vis. Comput. 29(1), 27–39 (2013)

    Article  Google Scholar 

  17. Celik, T.: Unsupervised change detection in satellite images using principal component analysis and \(k\)-means clustering. IEEE Geosci. Remote Sens. Lett. 6(4), 772–776 (2009)

    Article  MathSciNet  Google Scholar 

  18. Pham, D.L., Prince, J.L.: Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans. Med. Imaging 18(9), 737–752 (1999)

    Article  Google Scholar 

  19. Khosravanian, A., Rahmanimanesh, M., Keshavarzi, P., Mozaffari, S.: Fuzzy local intensity clustering (FLIC) model for automatic medical image segmentation. Vis. Comput. (3), 1–22 (2020)

  20. Song, Y., Peng, G.: Fast two-stage segmentation model for images with intensity inhomogeneity. Vis. Comput. 36(4), 1189–1202 (2020)

    Article  Google Scholar 

  21. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Technometrics 32(2), 227–229 (1988)

    MATH  Google Scholar 

  22. Duda, R.O., Hart, P.E.: Pattern classification and scene analysis. IEEE Trans. Autom. Control 19(4), 462–463 (2003)

  23. Krishnapuram, R., Keller, J.M.: The possibilistic c-means algorithm: insights and recommendations. IEEE Trans. Fuzzy Syst. 4(3), 385–393 (1996)

    Article  Google Scholar 

  24. Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1(2), 98–110 (1993)

    Article  Google Scholar 

  25. Santosh, K.C., Wendling, L., Antani, S., Thoma, G.R.: Overlaid arrow detection for labeling regions of interest in biomedical images. IEEE Intell. Syst. 31(3), 66–75 (2016)

    Article  Google Scholar 

  26. Dunn, J.C.: Some recent investigations of a new fuzzy partitioning algorithm and its application to pattern classification problems. J. Cybern. 4(2), 1–15 (1974)

  27. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Springer, Berlin (2013)

    MATH  Google Scholar 

  28. Zhao, M., Zhang, X., Jiang, J.: Topography image segmentation based on improved Chan-Vese model. Comput. Aided Draft. Des. Manuf. 2, 13–16 (2013)

    Google Scholar 

  29. Adhikari, S.K., Sing, J.K., Basu, D.K., Nasipuri, M., Saha, P.K.: Segmentation of MRI brain images by incorporating intensity inhomogeneity and spatial information using probabilistic fuzzy c-means clustering algorithm. In: 2012 International Conference on Communications, Devices and Intelligent Systems (CODIS), pp. 129–132 (2012)

  30. Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.C.: A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 13(4), 517–530 (2005)

    Article  Google Scholar 

  31. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings, vol. 2, pp. II–II (2003)

  32. Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21(3), 193–199 (2002)

    Article  Google Scholar 

  33. Krinidis, S., Chatzis, V.: A robust fuzzy local information c-means clustering algorithm. IEEE Trans. Image Process. 19(5), 1328–1337 (2010)

    Article  MathSciNet  Google Scholar 

  34. Chen, S., Zhang, D.: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. B. Cybern. 34(4), 1907–1916 (2004)

    Article  Google Scholar 

  35. Szilagyi, L., Benyo, Z., Szilágyi, S.M., Adam, H.S.: MR brain image segmentation using an enhanced fuzzy c-means algorithm. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), vol. 1, pp. 724–726 (2003)

  36. Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognit. 40(3), 825–838 (2007)

    Article  Google Scholar 

  37. Gong, M., Liang, Y., Shi, J., Ma, W., Ma, J.: Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Trans. Image Process. 22(2), 573–584 (2013)

    Article  MathSciNet  Google Scholar 

  38. Lei, T., Jia, X., Zhang, Y., He, L., Meng, H., Nandi, A.K.: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans. Fuzzy Syst. 26(5), 3027–3041 (2018)

    Article  Google Scholar 

  39. Zhang, Y., Bai, X., Fan, R., Wang, Z.: Deviation-sparse fuzzy c-means with neighbor information constraint. IEEE Trans. Fuzzy Syst. 27(1), 185–199 (2019)

    Article  Google Scholar 

  40. Xu, J., Zhao, T., Feng, G., Ni, M., Ou, S.: A fuzzy C-means clustering algorithm based on spatial context model for image segmentation. Int. J. Fuzzy Syst. 23(3), 816–832 (2021)

  41. Mishro, P.K., Agrawal, S., Panda, R., Abraham, A.: A novel type-2 fuzzy C-means clustering for brain MR image segmentation. IEEE Trans. Cybern. (99), 1–12 (2020)

  42. Wu, C., Liu, N.: Suppressed robust picture fuzzy clustering for image segmentation. Soft Comput. 25(5), 3751–3774 (2021)

  43. Liao, L., Qiu, X.: An optimal algorithm for medical image segmentation based on fuzzy c-means clustering. Comput. Technol. Dev. 27(12), 81–84 (2017)

    Google Scholar 

  44. Yang, L., Zhao, L., Wu, X.: Medical image segmentation based on fuzzy c-means clustering based on ant colony algorithm. J. Shandong Univ. (Eng. Sci.) 37(3), 51–54 (2007)

    Google Scholar 

  45. Liu, X., Zhang, Y.: Fuzzy c-means clustering algorithm for image segmentation based on simulated annealing. In: Computer Technology and Application Progress—The 17th National Computer Science and Technology Application (2006)

  46. Dhanachandra, N., Chanu, Y.J.: An image segmentation approach based on fuzzy cmeans and dynamic particle swarm optimization algorithm. Multimedia Tools Appl. 79(3), 1–20 (2020)

  47. Gong, M., Zhou, Z., Ma, J.: Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans. Image Process. 21(4), 2141–2151 (2012)

    Article  MathSciNet  Google Scholar 

  48. Bezdek, J.C.: Cluster validity with fuzzy sets. Taylor & Francis (1973)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported partly by the National Natural Science Foundation of China under Grant Nos. 62072281, 62007017 and the Science and Technology Innovation Program for Distributed Young Talents of Shandong Province Higher Education Institutions under Grant No. 2019KJN042.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Zhang, A., Wang, H. et al. An efficient FCM-based method for image refinement segmentation. Vis Comput 38, 2499–2514 (2022). https://doi.org/10.1007/s00371-021-02126-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02126-1

Keywords

Navigation