Skip to main content
Log in

Variational progressive-iterative approximation for RBF-based surface reconstruction

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

RBF-based methods play a very important role in the point cloud reconstruction field. However, solving a linear system is the bottleneck of such methods, especially when there are a large number of points and lead the computing to be time-consuming and unstable. In this paper, we firstly construct a novel implicit progressive-iterative approximation framework based on RBFs, which could elegantly reconstruct curves and surfaces or even higher dimensional data in an approximation or interpolation way, avoiding expensive computational cost on solving linear systems. Then, we further accelerate the proposed method with a strategy inspired from the conjugate gradient algorithm. In our framework, using proper RBFs allows to simply transform the iteration matrix to be symmetrical and positive definite. Such a property contributes to reduce the computational cost greatly and produce high-quality reconstruction results. Plenty of numerical examples on various challenging data are provided to demonstrate our efficiency, effectiveness, and superiority to other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Berger, M., Levine, J., Nonato, L., Taubin, G., Silva, C.: A benchmark for surface reconstruction. ACM Trans. Graph. 32(2), 20:1–20:17 (2013)

  2. Berger, M., Tagliasacchi, A., Seversky, L.M., Alliez, P., Guennebaud, G., Levine, J.A., Sharf, A., Silva, C.T.: A survey of surface reconstruction from point clouds. Sci. China Ser. F: Inform. Sci. 36(1), 301–329 (2017)

    Google Scholar 

  3. Calakli, F., Taubin, G.: SSD: Smooth signed distance surface reconstruction. Comput. Graph. Forum 30(7), 1993–2002 (2011)

    Article  Google Scholar 

  4. Carr, J., Beatson, R., J.B., C., Mitchell, T., Fright, W., McCallum, B., Evans, T.: Reconstruction and representation of 3D objects with radial basis function. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 67–76 (2001)

  5. Chen, T., Gang, Z.: Offset approximation of loop subdivision surface based on weighted progressive interpolation. J. Graph. 34(5), 66–70 (2013)

    Google Scholar 

  6. Chen, Z., Luo, X., Le, T., Ye, B., Chen, J.: Progressive interpolation based on Catmull–Clark subdivision surfaces. Comput. Graph. Forum 27(7), 1823–1827 (2008)

    Article  Google Scholar 

  7. Cheng, F.H.F., Fan, F.T., Lai, S.H., Huang, C.L., Wang, J.X., Yong, J.H.: Loop subdivision surface based progressive interpolation. J. Comput. Sci. Technol. 24(1), 39–46 (2009)

    Article  MathSciNet  Google Scholar 

  8. de Boor, C.: How does agee’s smoothing method work. In: Proceedings of the 1979 Army Numerical Analysis and Computers Conference, ARO Report, pp. 79–3. Citeseer (1979)

  9. Deng, C., Lin, H.: Progressive and iterative approximation for least squares b-spline curve and surface fitting. Comput. Aided Des. 47, 32–44 (2014)

    Article  MathSciNet  Google Scholar 

  10. Dey, T.K.: Curve and Surface Reconstruction: Algorithms with Mathematical Analysis, vol. 23. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  11. Frisken, S.F., Perry, R.N., Rockwood, A.P., Jones, T.R.: Adaptively sampled distance fields: a general representation of shape for computer graphics. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 249–254. ACM Press (2000)

  12. Gois, J., Polizelli-Junior, V., Etiene, T., Tejada, E., Castelo, A., Nonato, L., Ertl, T.: Twofold adaptive partition of unity implicits. Visual Comput. 24(12), 1013–1023 (2008)

    Article  Google Scholar 

  13. Hamza, Y.F., Lin, H., Li, Z.: Implicit progressive-iterative approximation for curve and surface reconstruction. Comput. Aid. Geom. Design 77, 101817 (2020)

    Article  MathSciNet  Google Scholar 

  14. Han, X., Hou, M.: Quasi-interpolation for data fitting by the radial basis functions. In: International Conference on Geometric Modeling and Processing, pp. 541–547. Springer (2008)

  15. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of Symposium on Geometry Processing, pp. 61–70 (2006)

  16. Kazhdan, M., Hoppe, H.: Screened Poisson surface reconstruction. ACM Trans. Graph. 32(3), 29:1–29:13 (2013)

  17. Le-Thi-Thu, N., Nguyen-Tan, K., Nguyen-Thanh, T.: Reconstructing low degree triangular parametric surfaces based on inverse loop subdivision. In: International Conference on Nature of Computation & Communication (2014)

  18. Lin, H.: Local progressive-iterative approximation format for blending curves and patches. Comput. Aid. Geom. Design 27(4), 322–339 (2010)

    Article  MathSciNet  Google Scholar 

  19. Lin, H., Cao, Q., Zhang, X.: The convergence of least-squares progressive iterative approximation for singular least-squares fitting system. J. Syst. Sci. Complex. 31(6), 1618–1632 (2018)

    Article  MathSciNet  Google Scholar 

  20. Lin, H., Wang, G., Dong, C.: Constructing iterative non-uniform b-spline curve and surface to fit data points. Sci. China Ser.: Inform. Sci. 47(3), 315–331 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Lin, H., Zhang, Z.: An extended iterative format for the progressive-iteration approximation. Comput. Graph. 35(5), 967–975 (2011)

    Article  Google Scholar 

  22. Lin, H., Zhang, Z.: Technical Section: An Extended Iterative Format for the Progressive-Iteration Approximation. Pergamon Press, Inc. (2011)

  23. Lin, H.W., Bao, H.J., Wang, G.J.: Totally positive bases and progressive iteration approximation. Comput. Math. Appl. 50(3–4), 575–586 (2005)

    Article  MathSciNet  Google Scholar 

  24. Liu, M., Li, B., Guo, Q., Zhu, C., Shao, Y.: Progressive iterative approximation for regularized least square bivariate b-spline surface fitting. J. Comput. Appl. Math. 327, (2017)

  25. Liu, S., Brunnett, G., Wang, J.: Multi-level hermite variational interpolation and quasi-interpolation. Visual Comput. 29(6), 627–637 (2013)

    Article  Google Scholar 

  26. Liu, S., Chan, K.C., Wang, C.C.: Iterative consolidation of unorganized point clouds. IEEE Comput. Graph. Appl. 32(3), 70–83 (2011)

    Google Scholar 

  27. Liu, S., Wang, C.C.: Quasi-interpolation for surface reconstruction from scattered data with radial basis function. Comput. Aid. Geom. Design 29(7), 435–447 (2012)

    Article  MathSciNet  Google Scholar 

  28. Liu, S., Wang, C.C., Brunnett, G., Wang, J.: A closed-form formulation of hrbf-based surface reconstruction by approximate solution. Comput. Aid. Des. 78, 147–157 (2016)

    Article  Google Scholar 

  29. Lorensen, W., Cline, H.: Marching cubes: a high resolution 3d surface construction algorithm. Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  30. Lu, L.: Weighted progressive iteration approximation and convergence analysis. Comput. Aid. Geom. Design 27(2), 129–137 (2010)

    Article  MathSciNet  Google Scholar 

  31. Luenberger, D.G., Ye, Y., et al.: Linear and Nonlinear Programming, vol. 2. Springer, New York (1984)

    MATH  Google Scholar 

  32. Macedo, I., Gois, J.P., Velho, L.: Hermite radial basis functions implicits. Comput. Graph. Forum 30(1), 27–42 (2011)

    Article  Google Scholar 

  33. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.: Multi-level partition of unity implicits. ACM Trans. Graph. 22(3), 463–470 (2003)

    Article  Google Scholar 

  34. Ohtake, Y., Belyaev, A., Seidel, H.: 3D scattered data interpolation and approximation with multilevel compactly supported RBFs. Graph. Models 67, 150–165 (2005)

    Article  Google Scholar 

  35. Pan, R., Meng, X., Whangbo, T.: Hermite variational implicit surface reconstruction. Sci. China Ser. F: Inform. Sci. 52(2), 308–315 (2009)

    MATH  Google Scholar 

  36. Qi, D., Tian, Z., Zhang, Y., Feng, J.: Numerical polishing method of curve fitting. Ph.D. thesis (1975)

  37. Turk, G., O’Brien, J.: Modeling with implicit surfaces that interpolate. ACM Trans. Graph. 21(4), 855–873 (2002)

    Article  Google Scholar 

  38. Wendland, H.: Scattered Data Approximation, vol. 17. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  39. Zhang, L., Zhao, L., Tan, J.: Progressive iterative approximation with different weights and its application. J. Zhejiang Univ. (Sci. Edn.) 44(1), 22–27 (2017)

Download references

Acknowledgements

Funding is provided by Hunan Science Fund for Distinguished Young Scholars (Grant No. 2019JJ20027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinru Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Liu, T., Hu, L. et al. Variational progressive-iterative approximation for RBF-based surface reconstruction. Vis Comput 37, 2485–2497 (2021). https://doi.org/10.1007/s00371-021-02213-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02213-3

Keywords

Navigation