Skip to main content
Log in

Affine non-local Bayesian image denoising algorithm

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper proposes an extension of the non-local Bayesian denoising algorithm. The idea is to use elliptical patches instead of regular square patches in the grouping process. We calculate the elliptical patches by an iterative method. We then use an affine invariant patch similarity measure to calculate the distance between two elliptical patches. Since the elliptical patch is a shape-adaptive patch and this similarity measure performs a patch comparison by automatically adapting the size and shape of the patches, so more similar patches are found and used for image denoising. This algorithm denoising procedure goes through two identical iterations to further improve the denoising performance. Experimental results on test images demonstrate that this algorithm achieves state-of-the-art denoising performance in terms of numerical results and subjective visual quality, compared with the non-local Bayesian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhang, K., Zuo, W.M., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018)

    Article  MathSciNet  Google Scholar 

  2. Schmidt, U., Roth, S.: Shrinkage fields for effective image restoration. In IEEE Conference on Computer Vision and Pattern Recognition. pp. 2774–2781 (2014)

  3. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2017)

    Article  Google Scholar 

  4. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  5. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  6. Altinsoy, E., Yang, J., Tu, E.: An improved denoising of G-banding chromosome images using cascaded CNN and binary classification network. Vis. Comput. (2021)

  7. Jiang, X., Jin, Y., Yao, Y.: Low-dose CT lung images denoising based on multiscale parallel convolution neural network. Vis. Comput. 37(8), 2419–2431 (2021)

    Article  Google Scholar 

  8. Zhang, K., Zuo, W.M., Chen, Y.J., Meng, D.Y., Zhang, L.: Beyond a Gaussian Denoiser: Residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Amaranageswarao, G., Deivalakshmi, S., Ko, S. B.: Joint restoration convolutional neural network for low-quality image super resolution. Vis. Comput. (2020)

  10. Chudasama, V., Upla, K., Raja, K., Ramachandra, R., Busch, C.: Compact and progressive network for enhanced single image super-resolution—ComPrESRNet. Vis. Comput. (2021)

  11. An, FP., Liu, Je., Bai, L.: Object recognition algorithm based on optimized nonlinear activation function-global convolutional neural network. Vis. Comput. (2021)

  12. Madhuranga, D., Madushan, R., Siriwardane, C., Gunasekera, K.: Real-time multimodal ADL recognition using convolution neural networks. Vis. Comput. 37(6), 1263–1276 (2021)

    Article  Google Scholar 

  13. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, X.: Total generalized variation and wavelet frame-based adaptive image restoration algorithm. Vis. Comput. 35(12), 1883–1894 (2019)

    Article  Google Scholar 

  15. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Tip. 15(12), 3736–3745 (2006)

    MathSciNet  Google Scholar 

  16. Gai, S.: Color image denoising via monogenic matrix-based sparse representation. Vis. Comput. 35(1), 109–122 (2019)

    Article  Google Scholar 

  17. Aharon, M., Elad, M., Bruckstein, A.M.: The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  MATH  Google Scholar 

  18. Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. vol. 2, pp. 60–65 (2005)

  19. Buades, A., Coll, B., Morel, J.-M.: Non-local means denoising. Image Processing. 1, 208–212 (2011)

    Article  MATH  Google Scholar 

  20. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  21. Zhang, L., Dong, W.S., Zhang, D., Shi, G.M.: Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recogn. 43(4), 1531–1549 (2010)

    Article  MATH  Google Scholar 

  22. Lebrun, M., Buades, A., Morel, J.-M.: A nonlocal Bayesian image denoising algorithm. SIAM J. Imag. Sci. 6(3), 1665–1688 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lebrun, M., Buades, A., Morel, J.-M.: Implementation of the “non-local Bayes” (NL-Bayes) image denoising algorithm. Image Processing on Line. 3, 1–42 (2013)

    Article  Google Scholar 

  24. Arias, P., Nikolova, M.: Below the surface of the non-local Bayesian image denoising method. Lect. Notes Comput. Sci. 10302, 208–220 (2017)

    Article  MATH  Google Scholar 

  25. Deledalle, C.A., Duval, V., Salmon, J.: Non-local methods with shape-adaptive patches (nlm-sap). J. Math. Imaging Vis. 43(2), 103–120 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fedorov, V., Ballester, C.: Affine non-local means image denoising. IEEE Trans. Image Process. 26(5), 2137–2148 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fedorov, V., Ballester, C.: An Affine invariant patch similarity. Image Process. 8, 490–513 (2018)

    Article  MathSciNet  Google Scholar 

  28. Ballester, C., Calderero, F., Caselles, V., Facciolo, G.: Multiscale analysis of similarities between images on Riemannian manifolds. SIAM J. Multiscale Model. Simul. 12(2), 616–649 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fedorov, V., Arias, P., Sadek, R., Facciolo, G., Ballester, C.: Linear multiscale analysis of similarities between images on Riemannian manifolds: practical formula and affine covariant metrics. SIAM J. Imag. Sci. 8(3), 2021–2069 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fedorov, V.: Affine Invariant Image Comparison and Its Applications. Spain, Pompeu Fabra University, Barcelona (2016)

    Google Scholar 

  31. Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  32. Fedorov, V., Arias, P., Facciolo, G., Ballester, C.: Affine invariant self-similarity for exemplar-based inpainting. VISAPP. pp. 48–58 (2016)

  33. Kheradmand, A., Milanfar, P.: A general framework for regularized, similarity-based image restoration. IEEE Trans. Image Process. 23(12), 5136–5151 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 12171054, and the fund of the "Thirteen Five" Scientific and Technological Research Planning Project of the Department of Education of Jilin Province (JJKH20200726KJ). The authors would like to thank the anonymous reviewers and editor for their helpful feedback and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoning Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Jia, X., Cheng, L. et al. Affine non-local Bayesian image denoising algorithm. Vis Comput 39, 99–118 (2023). https://doi.org/10.1007/s00371-021-02316-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02316-x

Keyword

Navigation