Skip to main content
Log in

Color image denoising by means of three-dimensional discrete fuzzy numbers

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The quality of color image is degraded by the random value impulse noise, which not only affects the overall visual effect of color image, but also causes errors in the application of color image, such as image recognition and image understanding. In this article, a new color image denoising method that uses the three-dimensional discrete fuzzy numbers (3DFN) is presented. Firstly, the definition of three-dimensional discrete fuzzy numbers is introduced based on a special non-empty finite subset of three-dimensional real number space. Secondly, the 3DFN is employed to interpret each pixel value of a color image. In addition, the mass centers and the ambiguity degree are defined to describe the properties of 3DFN. Then, these properties are selected to determine corrupted pixels and replace the noisy pixels; meanwhile, the non-noisy pixel is not changed. At last, some experiments are included to demonstrate that this algorithm can effectively remove the random value impulse noise and preserve the texture and edge of the color images. At the same time, the algorithm also brings forward a new idea in the application of discrete fuzzy numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Astola, J., Haavisto, P., Neuvo, Y.: Vector median filters. Proc. IEEE 78(4), 678–689 (1990)

    Article  Google Scholar 

  2. Masood, S., Hussain, A., Jaffar, M.A., Choi, T.S.: Color differences based fuzzy filter for extremely corrupted color images. Appl. Soft Comput. 21, 107–118 (2014)

    Article  Google Scholar 

  3. Casasnovas, J., Riera, J.V.: Extension of discrete t-norms and t-conorms to discrete fuzzy numbers. Fuzzy Sets Syst. 167, 65–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang, S.S.L., Zadeh, L.A.: On fuzzy mapping and control. IEEE T. Syst. Man. Cy. 2(1), 30–34 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  5. CVG.: Available: University of Granada. CVG-UGR Image Database.[Online]. (2014). (http://decsai.ugr.es/cvg/dbimagenes/c256.php)

  6. Diamond, P., Kloeden, P.: Characterization of compact subsets of fuzzy sets. Fuzzy Sets Syst. 29(3), 341–348 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dubois, D., Prade, H.: Fuzzy numbers: an overview. Readings in Fuzzy Sets for Intelligent Systems, pp. 112–148. (1993)

  8. Gao, X., Zhang, Y., Wang, H., Sun, Y., Zhang, X.: A modified fuzzy clustering algorithm based on dynamic relatedness model for image segmentation. Vis. Comput. (2022). https://doi.org/10.1007/s00371-022-02430-4

    Article  Google Scholar 

  9. Jin, L.: Complex impulse noise removal from color images based on super pixel segmentation. J. Vis. Commun. Image R. 48(10), 54–65 (2017)

    Article  Google Scholar 

  10. Kapoor, A., Biswas, K.K., Hanmandlu, M.: An evolutionary learning based fuzzy theoretic approach for salient object detection. Vis. Comput. (2016). https://doi.org/10.1007/s00371-016-1216-1

    Article  Google Scholar 

  11. Khosravanian, A., Rahmanimanesh, M., Keshavarzi, P., Mozaffari, S.: Fuzzy local intensity clustering (FLIC) model for automatic medical image segmentation. Vis. Comput. (2021). https://doi.org/10.1007/s00371-020-01861-1

    Article  Google Scholar 

  12. Kumawat, A., Panda, S.: A robust edge detection algorithm based on feature-based image registration (FBIR) using improved canny with fuzzy logic (ICWFL). Vis. Comput. (2019). https://doi.org/10.1007/s00371-021-02196-1

    Article  Google Scholar 

  13. Liu, L., Chen, S., Chen, X., Wang, T., Zhang, L.: Fuzzy weighted sparse reconstruction error-steered semi-supervised learning for face recognition. Vis. Comput. (2019). https://doi.org/10.1007/s00371-019-01746-y

    Article  Google Scholar 

  14. Liu, Z., Xiang, Q., Tang, J., Wang, Y., Zhao, P.: Robust salient object detection for RGB images. Vis. Comput. (2019). https://doi.org/10.1007/s00371-019-01778-4

    Article  Google Scholar 

  15. Lukac, R.: Adaptive color image filtering based on center-weighted vector directional filters. Multidim. Syst. Sign. P. 15, 169–196 (2004)

  16. Massanet, S., Riera, J.V., Torrens, J., Herrera-Viedma, E.: A new linguistic computational model based on discrete fuzzy numbers for computing with words. Inf. Sci. 258, 277–290 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pandey, R., Ghanekar, U.: Denoising of colour images using window contrast enhancement and vector alignment. AEU-Int. J. Electron. C. 69(2), 523–528 (2015)

    Article  Google Scholar 

  18. Perfilieva, I.: Fuzzy transforms: Theory and applications. Fuzzy Sets Syst. 157(8), 993–1023 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Riera, J.V., Massanet, S., Herrera-Viedma, E., Torrens, J.: Some interesting properties of the fuzzy linguistic model based on discrete fuzzy numbers to manage hesitant fuzzy linguistic information. Appl. Soft Comput. 36, 383–391 (2015)

    Article  Google Scholar 

  20. Riera, J.V., Torrens, J.: Aggregation of subjective evaluations based on discrete fuzzy numbers. Fuzzy Sets Syst. 191, 21–40 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Riera, J.V., Torrens, J.: Aggregation functions on the set of discrete fuzzy numbers defined from a pair of discrete aggregations. Fuzzy Sets Syst. 241, 76–93 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Riera, J.V., Torrens, J.: Using discrete fuzzy numbers in the aggregation of incomplete qualitative information. Fuzzy Sets Syst. 264, 121–137 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Roy, A., Laskar, R.H.: Fuzzy SVM based fuzzy adaptive filter for denoising impulse noise from color images. Multimed. Tools and Appl. 78(2), 1785–1804 (2019)

    Article  Google Scholar 

  24. Roy, A., Manam, L., Laskar, R.H.: Region adaptive fuzzy filter: an approach for removal of random valued impulse noise. IEEE T. Ind. Electron. , pp. 1–10 (2018)

  25. Voxman, W.: Canonical representations of discrete fuzzy numbers. Fuzzy Sets Syst. 118(3), 457–466 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, G., Liu, Y., Zhao, T.: A quaternion-based switching filter for colour image denoising. Sig. Process. 102(9), 216–225 (2014)

    Article  Google Scholar 

  27. Wang, G., Shi, P., Xie, Y., Shi, Y.: Two-dimensional discrete fuzzy numbers and applications. Inf. Sci. 326, 258–269 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, G., Wang, J.: Generalized discrete fuzzy number and application in risk evaluation. Int. J. Fuzzy Syst. 17(4), 531–543 (2015)

    Article  MathSciNet  Google Scholar 

  29. Wang, G., Wu, C., Zhao, C.: Representation and operations of discrete fuzzy numbers. Se. Asian B. Math. 29(5), 1003–1010 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Wang, G., Zhu, H., Wang, Y.: Fuzzy decision filter for color images denoising. Optik 126, 2428–2432 (2015)

    Article  Google Scholar 

  31. Wu, C., Huang, C., Zhang, J.: Intuitionistic fuzzy information-driven total bregman divergence fuzzy clustering with multiple local information constraints for image segmentation. Vis. Comput. (2021). https://doi.org/10.1007/s00371-021-02319-8

    Article  Google Scholar 

  32. Zhang, K., Gao, X., Tao, D., Li, X.: Single image super-resolution with multiscale similarity learning. IEEE T. Neur. Net. Lear. 24(10), 1648–1659 (2013)

    Article  Google Scholar 

  33. Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: A feature similarity index for image quality assessment. IEEE T. Image Process. 20(8), 2378–2386 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhao, M., Liu, M.Y., Su, J., Liu, T.: A shape similarity-based ranking method of hesitant fuzzy linguistic preference relations using discrete fuzzy number for group decision making. Soft Comput (2019)

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant Nos. 12061067, 12161082 and 61861040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengtai Gong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Order of Grant Nos. in funding was changed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, N., Gong, Z. Color image denoising by means of three-dimensional discrete fuzzy numbers. Vis Comput 39, 2051–2063 (2023). https://doi.org/10.1007/s00371-022-02464-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02464-8

Keywords

Navigation