Skip to main content
Log in

Incremental functional maps for accurate and smooth shape correspondence

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Incorporating multiscale spectral manifold wavelets preservation into the functional map framework for shape correspondence achieves great results in terms of both efficiency and effectiveness. However, fixing the dimension of the spectral embedding strategy in iterations of optimization is troublesome, such as missing high-frequency information when the dimension is small or getting trapped in local minima at a high dimension. In this paper, we present a simple and efficient method for refining correspondences from low frequency to high frequency with a theoretical guarantee. We formulate a strong constraint where the multiscale spectral manifold wavelets should be preserved at each scale correspondingly in the case of the arbitrary dimension of spectral embeddings. To solve the formula, we deduce two relaxed optimization subproblems and propose an incremental alternating iterative algorithm between the spatial and spectral domains via spectral up-sampling and filtering, computing the functional maps and pointwise maps in turn. Our results demonstrate that our method is robust to noisy initialization and scalable with regard to shape resolutions. The deformable shape correspondence benchmark experiments show our method produces more accurate and smoother results than state of the arts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: SCAPE: Shape completion and animation of people. ACM Transactions on Graphics 24(3), 408–416 (2005)

    Article  Google Scholar 

  2. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: A quantum mechanical approach to shape analysis. In: International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1626–1633. IEEE (2011)

  3. Bertsekas, D.: Network optimization: continuous and discrete models, vol. 8. Athena Scientific (1998)

  4. Bogo, F., Romero, J., Loper, M., Black, M.J.: FAUST: Dataset and evaluation for 3D mesh registration. In: Conference on Computer Vision and Pattern Recognition, pp. 3794–3801. IEEE (2014)

  5. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical geometry of non-rigid shapes. Science & Business Media (2008)

  6. Donati, N., Sharma, A., Ovsjanikov, M.: Deep geometric functional maps: robust feature learning for shape correspondence. In: Conference on Computer Vision and Pattern Recognition, pp. 8589–8598. IEEE (2020)

  7. Eisenberger, M., Toker, A., Leal-Taixé, L., Cremers, D.: Deep shells: Unsupervised shape correspondence with optimal transport. In: Advances in Neural Information Processing Systems, pp. 10,491–10,502. MIT Press (2020)

  8. Ezuz, D., Ben-Chen, M.: Deblurring and Denoising of Maps between Shapes. Computer Graphics Forum 36(5), 165–174 (2017)

    Article  Google Scholar 

  9. Ezuz, D., Solomon, J., Ben-Chen, M.: Reversible harmonic maps between discrete surfaces. ACM Transactions on Graphics 38(2) (2019)

  10. Gao, M., Zorah, L., Bernard, F.: Isometric Multi-Shape Matching. In: Conference on Computer Vision and Pattern Recognition, pp. 14,183–14,193. IEEE (2021)

  11. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Applied and Computational Harmonic Analysis 30(2), 129–150 (2011)

    Article  MathSciNet  Google Scholar 

  12. Hou, T., Qin, H.: Continuous and discrete mexican hat wavelet transforms on manifolds. Graphical Models 74(4), 221–232 (2012)

    Article  Google Scholar 

  13. Hu, L., Li, Q., Liu, S., Liu, X.: Efficient deformable shape correspondence via multiscale spectral manifold wavelets preservation. In: Conference on Computer Vision and Pattern Recognition, pp. 14,536–14,545. IEEE (2021)

  14. Huang, Q.X., Adams, B., Wicke, M., Guibas, L.J.: Non-rigid registration under isometric deformations. Computer Graphics Forum 27(5), 1449–1457 (2008)

    Article  Google Scholar 

  15. Huang, R., Ren, J., Wonka, P., Ovsjanikov, M.: Consistent ZoomOut: Efficient Spectral Map Synchronization. Computer Graphics Forum 39(5), 265–278 (2020)

    Article  Google Scholar 

  16. Kim, V.G., Lipman, Y., Funkhouser, T.: Blended intrinsic maps. ACM Transactions on Graphics 30(4) (2011)

  17. Lähner, Z., Rodolà, E., Bronstein, M.M., Cremers, D., Burghard, O., Cosmo, L., Dieckmann, A., Klein, R., Sahillioglu, Y.: Shrec’16: Matching of deformable shapes with topological noise. In: Proc. of Eurographics Workshop on 3D Object Retrieval (3DOR) (2016)

  18. Leonardi, N., Van De Ville, D.: Tight wavelet frames on multislice graphs. IEEE Transactions on Signal Processing 61(13), 3357–3367 (2013)

    Article  MathSciNet  Google Scholar 

  19. Li, Q., Hu, L., Liu, S., Yang, D., Liu, X.: Anisotropic spectral manifold wavelet descriptor. Computer Graphics Forum 40(1), 81–96 (2021)

    Article  Google Scholar 

  20. Litman, R., Bronstein, A.M.: Learning spectral descriptors for deformable shape correspondence. IEEE Transactions on Pattern Analysis and Machine Intelligence 36(1), 171–180 (2014)

    Article  Google Scholar 

  21. Maron, H., Dym, N., Kezurer, I., Kovalsky, S., Lipman, Y.: Point registration via efficient convex relaxation. ACM Transactions on Graphics 35(4) (2016)

  22. Melzi, S., Ren, J., Rodolà, E., Sharma, A., Wonka, P., Ovsjanikov, M.: ZoomOut: Spectral upsampling for efficient shape correspondence. ACM Transactions on Graphics 38(6) (2019)

  23. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Visualization and Mathematics III, vol. 81, pp. 35–57. Springer (2003)

  24. Nadav, D.Y., Maron, H., Lipman, Y.: DS++: A flexible, scalable and provably tight relaxation for matching problems. ACM Transactions on Graphics 36(6) (2017)

  25. Nogneng, D., Melzi, S., Rodolá, E., Castellani, U., Bronstein, M., Ovsjanikov, M.: Improved functional mappings via product preservation. Computer Graphics Forum 37(2), 179–190 (2018)

    Article  Google Scholar 

  26. Nogneng, D., Ovsjanikov, M.: Informative descriptor preservation via commutativity for shape matching. Computer Graphics Forum 36(2), 259–267 (2017)

    Article  Google Scholar 

  27. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: A flexible representation of maps between shapes. ACM Transactions on Graphics 31(4) (2012)

  28. Ovsjanikov, M., Corman, E., Bronstein, M., Rodolà, E., Ben-Chen, M., Guibas, L., Chazal, F., Bronstein, A.: Computing and processing correspondences with functional maps. ACM SIGGRAPH Courses (2017)

  29. Pai, G., Jing, R., Melzi, S., Wonka, P., Ovsjanikov, M.: Fast Sinkhorn Filters : Using Matrix Scaling for Non-Rigid Shape Correspondence with Functional Maps. In: Conference on Computer Vision and Pattern Recognition, pp. 384–393. IEEE (2021)

  30. Ren, J., Melzi, S., Wonka, P., Ovsjanikov, M.: Discrete optimization for shape matching. Computer Graphics Forum 40(5), 81–96 (2021)

    Article  Google Scholar 

  31. Ren, J., Poulenard, A., Wonka, P., Ovsjanikov, M.: Continuous and orientation-preserving correspondences via functional maps. ACM Transactions on Graphics 37(6) (2018)

  32. Rodolà, E., Cosmo, L., Bronstein, M.M., Torsello, A., Cremers, D.: Partial functional correspondence. Computer Graphics Forum 36(1), 222–236 (2017)

    Article  Google Scholar 

  33. Rodolà, E., Moeller, M., Cremers, D.: Regularized Pointwise Map Recovery from Functional Correspondence. Computer Graphics Forum 36(8), 700–711 (2017)

    Article  Google Scholar 

  34. Sahillioğlu, Y.: Recent advances in shape correspondence. Visual Computer 36(8), 1705–1721 (2020)

    Article  Google Scholar 

  35. Salti, S., Tombari, F., Di Stefano, L.: SHOT: Unique signatures of histograms for surface and texture description. Computer Vision and Image Understanding 125, 251–264 (2014)

    Article  Google Scholar 

  36. Schonsheck, S.C., Bronstein, M.M., Lai, R.: Nonisometric Surface Registration via Conformal Laplace-Beltrami Basis Pursuit. Journal of Scientific Computing 86(3), 1–24 (2021)

    Article  MathSciNet  Google Scholar 

  37. Shtern, A., Kimmel, R.: Iterative closest spectral kernel maps. In: International Conference on 3D Vision, pp. 499–505. IEEE (2014)

  38. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. Computer Graphics Forum 28(5), 1383–1392 (2009)

    Article  Google Scholar 

  39. Varun, J., Zhang, H., van Kaick, O.: Non-Rigid spectral correspondence of triangle meshes. International Journal of Shape Modeling 13(1), 101–124 (2007)

    Article  MathSciNet  Google Scholar 

  40. Vestner, M., Lahner, Z., Boyarski, A., Litany, O., Slossberg, R., Remez, T., Rodola, E., Bronstein, A., Bronstein, M., Kimmel, R., Cremers, D.: Efficient deformable shape correspondence via kernel matching. In: International Conference on 3D Vision, pp. 517–526. IEEE (2017)

  41. Vestner, M., Litman, R., Rodolà, E., Bronstein, A., Cremers, D.: Product manifold filter: Non-rigid shape correspondence via kernel density estimation in the product space. In: Conference on Computer Vision and Pattern Recognition, pp. 6681–6690. IEEE (2017)

  42. Wang, Y., Ren, J., Yan, D.M., Guo, J., Zhang, X., Wonka, P.: MGCN: Descriptor learning using multiscale GCNs. ACM Transactions on Graphics 39(4) (2020)

  43. Xiang, R., Lai, R., Zhao, H.: Efficient and robust shape correspondence via sparsity-enforced quadratic Assignment. In: Conference on Computer Vision and Pattern Recognition, pp. 9510–9519. IEEE (2020)

  44. Xiang, R., Lai, R., Zhao, H.: A dual iterative refinement method for non-rigid shape matching. In: Conference on Computer Vision and Pattern Recognition, pp. 15,930–15,939. IEEE (2021)

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 62172447, 61876191), Hunan Provincial Natural Science Foundation of China (No. 2021JJ30172), and the Open Project Program of the National Laboratory of Pattern Recognition (NLPR) (No. 202200025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinsong Li.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Equivalence of two optimization problems

Here we show the optimization problem (10) and (11) are equivalent when adding a regularizer represented as \(\mathcal {R} \left( \mathbf {P} \right) = \left\| \left( {\left( \varvec{\Phi }_{\mathcal {N}}^{k} \right) }{\left( \varvec{\Phi }_{\mathcal {N}}^{k} \right) }^{+} - \mathbf {I} \right) \mathbf {P}^\mathrm {T}\varvec{\Phi }_{\mathcal {M}}^{k} \right\| _{A_\mathcal {N}}^{2}\) into problem (10).

To begin with, we give the result: for any matrix \(\mathbf {X}\), \(\mathbf {Y}\) and a matrix \(\mathbf {B}\) satisfying \(\mathbf {B}^\mathrm {T} \mathbf {A} \mathbf {B} = \mathbf {I}\), i.e., \(\mathbf {B}^{+} = \mathbf {B}^\mathrm {T} \mathbf {A}\), where \(\mathbf {A}\) is a symmetric positive-definite matrix, and let \(\left\| \mathbf {X} \right\| _{A}^{2} = trace(\varvec{\mathbf {X}^\mathrm {T} \mathbf {AX}})\), and then, the following equation holds:

$$\begin{aligned} \left\| \mathbf {BX} - \mathbf {Y} \right\| _{F}^{2} + \left\| \left( \mathbf {BB}^{+} - \mathbf {I} \right) \mathbf {Y} \right\| _{A}^{2} = \left\| \mathbf {BX} - \mathbf {Y} \right\| _{A}^{2}. \end{aligned}$$
(14)

In fact, we observe that subtracting and adding the term \(\mathbf {BB}^{+}\mathbf {Y}\) in the \(\left\| \mathbf {BX} - \mathbf {Y} \right\| _{A}^{2}\), we get

$$\begin{aligned}&\left\| \mathbf {BX} - \mathbf {Y} \right\| _{A}^{2}\\&\quad = \left\| \mathbf {BX} - \mathbf {BB}^{+}\mathbf {Y} + \mathbf {BB}^{+}\mathbf {Y} -\mathbf {Y} \right\| _{A}^{2} \\&\quad = \left\| \mathbf {B} \left( \mathbf {X} - \mathbf {B}^{+} \mathbf {Y}\right) \right\| _{A}^{2} + \left\| \left( \left( \mathbf {BB}^{+} \right) - \mathbf {I} \right) \mathbf {Y} \right\| _{A}^{2} \\&\qquad + 2 trace\left( \left( \mathbf {B} \left( \mathbf {X} - \mathbf {B}^{+} \mathbf {Y} \right) \right) ^\mathrm {T} \mathbf {A} \left( \mathbf {BB}^{+} - \mathbf {I} \right) \mathbf {Y}\right) . \end{aligned}$$

On the one hand, since \(\mathbf {B}^\mathrm {T} \mathbf {A} \mathbf {B} = \mathbf {I}\), we have

$$\begin{aligned}&\left\| \mathbf {B} \left( \mathbf {X} - \mathbf {B}^{+} \mathbf {Y}\right) \right\| _{A}^{2}\\&\quad = trace \left( \left( \mathbf {X} - \mathbf {B}^{+} \mathbf {Y} \right) ^\mathrm {T} \mathbf {B}^\mathrm {T} \mathbf {AB} \left( \mathbf {X} - \mathbf {B}^{+} \mathbf {Y} \right) \right) \\&\quad = \left\| \mathbf {X} - \mathbf {B}^{+} \mathbf {Y} \right\| _{F}^{2}. \end{aligned}$$

On the other hand, note that \(\mathbf {B}^\mathrm {T}\mathbf {A} \left( \mathbf {BB}^{+} - \mathbf {I} \right) = \mathbf {B}^{+} - \mathbf {B}^{+} = 0\), where \(\mathbf {B}^\mathrm {T} \mathbf {A} \mathbf {B} = \mathbf {I}\) and \(\mathbf {B}^{+} = \mathbf {B}^\mathrm {T} \mathbf {A}\) are used.

Therefore, Eq. (14) is given. Let \(\mathbf {X} = \mathbf {C}^{*}\), \(\mathbf {B} = \varvec{\Phi }_{\mathcal {N}}^{k}\), \(\mathbf {A} = \mathbf {A}_\mathcal {N}\), and \(\mathbf {Y} = \mathbf {P}^\mathrm {T}\varvec{\Phi }_{\mathcal {M}}^{k}\), we have

$$\begin{aligned} \begin{aligned}&\left\| \varvec{\Phi }_{\mathcal {N}}^{k}\mathbf {C}^{*} - \mathbf {P}^\mathrm {T}\varvec{\Phi }_{\mathcal {M}}^{k} \right\| _{F}^{2} + \left\| \left( \varvec{\Phi }_{\mathcal {N}}^{k} \left( \varvec{\Phi }_{\mathcal {N}}^{k}\right) ^{+} - \mathbf {I} \right) \mathbf {P}^\mathrm {T}\varvec{\Phi }_{\mathcal {M}}^{k} \right\| _{A_{\mathcal {N}}}^{2} \\&\quad = \left\| \varvec{\Phi }_{\mathcal {N}}^{k}\mathbf {C}^{*} - \mathbf {P}^\mathrm {T}\varvec{\Phi }_{\mathcal {M}}^{k} \right\| _{A_{\mathcal {N}}}^{2}. \end{aligned} \end{aligned}$$

As for the issue that

$$\begin{aligned} \begin{aligned}&\mathop {\arg \min }\limits _{\mathbf {P}} \left\| \varvec{\Phi }_{\mathcal {N}}^{k} \mathbf {C}^{*} - \mathbf {P}^\mathrm {T}\varvec{\Phi }_{\mathcal {M}}^{k}\right\| _{F}^{2} \\&\quad = \mathop {\arg \min }\limits _{\mathbf {P}} \left\| \varvec{\Phi }_{\mathcal {N}}^{k} \mathbf {C}^{*} - \mathbf {P}^\mathrm {T}\varvec{\Phi }_{\mathcal {M}}^{k}\right\| _{A_\mathcal {N}}^{2}, \end{aligned} \end{aligned}$$

both problems can be solved by finding the closest column between \(\varvec{\Phi }_{\mathcal {N}}^{k} \mathbf {C}^{*}\) and \(\varvec{\Phi }_{\mathcal {M}}^{k}\) since the matrix \(\mathbf {P}\) is encoded by a pointwise map. To improve accuracy and smoothness of correspondences, we select fast Sinkhorn filter algorithm to solve this optimization problem.

Proof of Remark 1

Here we give the proof that (13) is a relaxed solution to problem (12) under certain conditions.

Proof

Indeed, the analytical solution of problem (12) exists by solving a series of linear equations as follows:

$$\begin{aligned} \begin{aligned} {{\mathbf {C}}_{k}}g_{\mathcal {M}}\left( {{s}_{l}}\varvec{\Lambda }_{\mathcal {M}}^{k} \right) {{\left( \varvec{\Phi }_{\mathcal {M}}^{k} \right) }^{+}}=g_{\mathcal {N}}\left( {{s}_{l}}\varvec{\Lambda }_{\mathcal {N}}^{k} \right)&{{\left( \varvec{\Phi }_{\mathcal {N}}^{k} \right) }^{+}}\mathbf {P}^\mathrm {T}, \\&l=0,1,......,L. \end{aligned} \end{aligned}$$

Contrary to Eq. (8), here the point-to-point mapping matrix \(\mathbf {P}\) is known, while the functional map matrix \(\mathbf {C}_k\) is unknown and enforces no constrain.

Multiplying \(g\left( {{s}_{l}}\varvec{\Lambda }_{\mathcal {M}}^{k} \right) \) on the left and right sides of the above equations, then

$$\begin{aligned} \begin{aligned} {{\mathbf {C}}_{k}}g_{\mathcal {M}}^{2}{{\left( {{s}_{l}}\varvec{\Lambda }_{\mathcal {M}}^{k} \right) }}=g_{\mathcal {N}}\left( {{s}_{l}}\varvec{\Lambda }_{\mathcal {N}}^{k} \right) {{\left( \varvec{\Phi }_{\mathcal {N}}^{k} \right) }^{+}}&\mathbf {P}^\mathrm {T}\varvec{\Phi }_{\mathcal {M}}^{k}g_{\mathcal {M}}\left( {{s}_{l}}\varvec{\Lambda }_{\mathcal {M}}^{k} \right) ,\\&l=0,1,......,L. \end{aligned} \end{aligned}$$

Summing the above equations, we obtain

$$\begin{aligned} \sum \limits _{l=0}^{L}{{{\mathbf {C}}_{k}}g_{\mathcal {M}}^{2}{{\left( {{s}_{l}}\varvec{\Lambda }_{\mathcal {M}}^{k} \right) }}}&=\sum \limits _{l=0}^{L}{g_{\mathcal {N}}}\left( {{s}_{l}}\varvec{\Lambda }_{\mathcal {N}}^{k} \right) {{\left( \varvec{\Phi }_{\mathcal {N}}^{k} \right) }^{+}} \\&\quad \times \mathbf {P}^\mathrm {T}\varvec{\Phi }_{\mathcal {M}}^{k}g_{\mathcal {M}}\left( {{s}_{l}}\varvec{\Lambda }_{\mathcal {M}}^{k} \right) . \end{aligned}$$

Taking \(\mathbf {C}_{k}\) out of the summation on the left side of the equation, we get

$$\begin{aligned} {{\mathbf {C}}_{k}}\sum \limits _{l=0}^{L}{g_{\mathcal {M}}^{2}{{\left( {{s}_{l}}\varvec{\Lambda }_{\mathcal {M}}^{k} \right) }}}&=\sum \limits _{l=0}^{L}{g_{\mathcal {N}}}\left( {{s}_{l}}\varvec{\Lambda }_{\mathcal {N}}^{k} \right) {{\left( \varvec{\Phi }_{\mathcal {N}}^{k} \right) }^{+}} \\&\quad \times \mathbf {P}^\mathrm {T}\varvec{\Phi }_{\mathcal {M}}^{k}g_{\mathcal {M}}\left( {{s}_{l}}\varvec{\Lambda }_{\mathcal {M}}^{k} \right) . \end{aligned}$$

According to Eq. (9), this implies the desired result with

$$\begin{aligned} {{\mathbf {C}}_{k}}=\sum \limits _{l=0}^{L}{g_{\mathcal {N}}\left( {{s}_{l}}\varvec{\Lambda }_{\mathcal {N}}^{k} \right) {{\left( \varvec{\Phi }_{\mathcal {N}}^{k} \right) }^{+}}\mathbf {P}^\mathrm {T}\varvec{\Phi }_{\mathcal {M}}^{k}g_{\mathcal {M}}\left( {{s}_{l}}\varvec{\Lambda }_{\mathcal {M}}^{k} \right) }. \end{aligned}$$

\(\square \)

Equivalence of two functional map representations

To derive the equivalence of two functional map representations if the pointwise correspondence from the shape \(\mathcal {M}\) to the shape \(\mathcal {N}\) is an isometry, where Laplacian eigenvalues of two shapes are same, none of which are repeating, we first give following result: if the diagonal matrices \(\mathbf {A}_l, \mathbf {D}_l, l = 0...L\), satisfy \(\sum _{l = 0}^L \mathbf {A}_l\mathbf {D}_l = \mathbf {I}\), \(\sum _{l = 0}^L \mathbf {A}_l \mathbf {B}\mathbf {D}_l = \mathbf {B}\) holds for any diagonal matrix \(\mathbf {B}\). To see that, we observe that if two diagonal matrices are multiplied, the commutative law of multiplication is satisfied, i.e., \(\mathbf {B}\mathbf {D}_l = \mathbf {D}_l \mathbf {B}\). From this, it immediately follows that \(\sum _{l = 0}^L \mathbf {A}_l \mathbf {B}\mathbf {D}_l = \sum _{l = 0}^L \mathbf {A}_l\mathbf {D}_l \mathbf {B} = \mathbf {B}\).

For one thing, under the condition of isometry, ZoomOut[22] proved the functional map matrix \(\mathbf {C}_k\) is both orthonormal and diagonal. For another thing, when Laplacians of two shapes have same eigenvalues, none of which are repeating, we obtain that \(g_{\mathcal {N}}\left( {{s}_{l}}\varvec{\Lambda } _{\mathcal {N}}^{k} \right) = g_{\mathcal {M}}\left( {{s}_{l}}\varvec{\Lambda } _{\mathcal {M}}^{k} \right) \), and all of them are diagonal. Thus, we get the equivalence of two functional map representations with \(\mathbf {A}_l = g_{\mathcal {N}}\left( {{s}_{l}}\varvec{\Lambda } _{\mathcal {N}}^{k} \right) \), \(\mathbf {D}_l = g_{\mathcal {M}}\left( {{s}_{l}}\varvec{\Lambda } _{\mathcal {M}}^{k} \right) \) and \(\mathbf {B} = {{\left( \varvec{\Phi }_{\mathcal {N}}^{k} \right) }^{+}}\mathbf {P}^\mathrm {T}\varvec{\Phi }_{\mathcal {M}}^{k}\), which is a general functional map.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Wang, H., Hu, L. et al. Incremental functional maps for accurate and smooth shape correspondence. Vis Comput 38, 3313–3325 (2022). https://doi.org/10.1007/s00371-022-02553-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02553-8

Keywords

Navigation