Skip to main content
Log in

On Graphs Whose Spectral Radius is Bounded by \(\frac{3}{2}\sqrt{2}\)

  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

The structure of graphs whose largest eigenvalue is bounded by \(\frac{3}{2}\sqrt{2}\) (≈2.1312) is investigated. In particular, such a graph can have at most one circuit, and has a natural quipu structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alon, N.: On the edge-expansion of graphs, Combin. Probab. Comput. 11, 1–10 (1993)

    Google Scholar 

  • Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs, Springer, Berlin, 1989

  • Brouwer, A.E., Neumaier, A.: The graphs with largest eigenvalue between 2 and \(\sqrt{2+\sqrt{5}}\) , Linear Algebra Appl. 114/115, 273–276 (1989)

  • Bussemaker, F.C., Neumaier, A.: Exceptional graphs with smallest eigenvalue  − 2 and related topics, Math. Comput. 59, 583–608 (1992)

    Google Scholar 

  • Cameron, P., Goethals, J.-M., Seidel, J.J., Shult, E.E.: Line graphs, root systems and elliptic geometry, J. Algebra 43, 305–327 (1976)

    Google Scholar 

  • Cvetkovic, D., Doob, M., Gutman, I.: On graphs whose spectral radius does not exceed \(\sqrt{2+\sqrt{5}}\) , Ars Combinat. 14, 225–239 (1982)

  • Cvetković, D., Rowlinson, P., Simić, S.K.: Graphs with least eigenvalue  − 2: the star complement technique, J. Algebraic Combin. 14, 5–16 (2001)

    Google Scholar 

  • Cvetković, D., Simić, S.: The second largest eigenvalue of a graph – a survey, FILOMAT (Nis), 9(1995), Proc. Conf. on Algebra, Logic and Discrete Math. Nis, April 14–16, 1995, pp 53–76

  • Cvetković, D., Simić, S.: On graphs whose second largest eigenvalue does not exceed \((\sqrt{5} - 1)/2\) , Discrete Math. 138, 213–227 (1995)

  • Cvetkovic, D., Simic, S.K.: Minimal graphs whose second largest eigenvalue is not less than \((\sqrt{5}-1)/2\) , Bull. Acad. Serbe Sci. Arts, Cl. Sci. Math. Natur., Sci. Math. 25, 47–70 (2000)

    Google Scholar 

  • Friedman, J.: A proof of Alon’s second eigenvalue conjecture and related problems, Manuscript (2004). arXiv:cs.DM/0405020

  • Hoffman, A.: On limit points of spectral radii of non-negative symmetrical integral matrices, Lecture Notes in Math. vol. 303, pp. 165–172, Springer, Berlin, 1972

  • Hoffman, A.: On graphs whose least eigenvalue exceeds \(-1 - \sqrt{2}\) , Linear Algebra Appl. 16, 153–165 (1977)

  • Lepović, M., Gutman, I.: Some spectral properties of starlike trees, Bull. T.CXXII de l’Académie Serbe des Sciences et des Arts-2001, Classe des Sciences mathématiques et naturelles Sciences mathématiques, No. 26, 2001

  • Neumaier, A.: The second largest eigenvalue of a tree, Linear Algebra Appl. 64, 9–25 (1982)

    Google Scholar 

  • Shearer, J.: On the distribution of the maximum eigenvalue of graphs, Linear Algebra Appl. 114/115, 17–20 (1989)

  • Shu, J.: On trees whose second largest eigenvalue does not exceed 1, OR Trans. 2, 6–9 (1998)

    Google Scholar 

  • Shu, J.: On trees whose second largest eigenvalue does not exceed \(\sqrt{2}\) , J. East China Normal University, Nat. Sci. (4), 15–22 (1999)

  • Smith, J.H.: Some properties of the spectrum of a graph, in: Combinatorial Structures and Their Applications (R. Guy, ed.), pp. 403–406, Gordon and Breach, New York, 1970

  • Spielman, D.A.: Faster isomorphism testing of strongly regular graphs, in: STOC 96: 28th Annual ACM Symposium on Theory of Computing, pp. 576–584

  • Woo, R., Neumaier, A.: On graphs whose smallest eigenvalue is at least \(-1-\sqrt{2}\) , Linear Algebra Appl. 226–228, 577–592 (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold Neumaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, R., Neumaier, A. On Graphs Whose Spectral Radius is Bounded by \(\frac{3}{2}\sqrt{2}\). Graphs and Combinatorics 23, 713–726 (2007). https://doi.org/10.1007/s00373-007-0745-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-007-0745-9

Keywords

Navigation