Skip to main content
Log in

An Ore-Type Theorem on Hamiltonian Square Cycles

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

The kth power of a cycle C is the graph obtained from C by joining every pair of vertices with distance at most k on C. The second power of a cycle is called a square cycle. Pósa conjectured that every graph with minimum degree at least 2n/3 contains a hamiltonian square cycle. Later, Seymour proposed a more general conjecture that if G is a graph with minimum degree at least (kn)/(k + 1), then G contains the kth power of a hamiltonian cycle. Here we prove an Ore-type version of Pósa’s conjecture that if G is a graph in which deg(u) + deg(v) ≥ 4n/3 − 1/3 for all non-adjacent vertices u and v, then for sufficiently large n, G contains a hamiltonian square cycle unless its minimum degree is exactly n/3 + 2 or n/3 + 5/3. A consequence of this result is an Ore-type analogue of a theorem of Aigner and Brandt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aigner M., Brandt S.: Embedding arbitrary graphs of maximum degree two. J. Lond. Math. Soc. 48, 39–51 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Châu, P.: An Ore-type version of Pósa’s conjecture (2009, manuscript)

  3. Châu P., DeBiasio L., Kierstead H.A.: Pósa’s Conjecture for graphs of order at least 2 × 108. Random Struct. Algorithms 39(4), 507–525 (2011)

    Article  MATH  Google Scholar 

  4. Dirac G.A.: Some theorems on abstract graphs. Proc. Lond. Math. Soc. 2, 68–81 (1952)

    MathSciNet  Google Scholar 

  5. Erdös P.: Problem 9, Theory of Graphs and its Applications (M. Fielder ed.), Czech. Acad. Sci. Publ., Prague, p. 159 (1964)

  6. Fan G.H., Häggkvist R.: The square of a hamiltonian cycle. SIAM J. Discrete Math. 7(2), 203–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fan G.H., Kierstead H.A.: The square of paths and cycles. J. Comb. Theory Ser. B 63(1), 55–64 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fan G.H., Kierstead H.A.: Hamiltonian square paths. J. Comb. Theory Ser. B 67(2), 167–182 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fan G.H., Kierstead H.A.: Partitioning a graph into two square-cycles. J. Graph Theory 23(3), 241–256 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Faudree, R.J., Gould, R.J., Jacobson, M.S., Schelp, R.: Seymour’s Conjecture. Advances in Graph Theory. In: Kulli, V.R. (ed.) Vishwa, Gulbarga, pp. 163–171 (1991)

  11. Hajnal, A., Szemerédi, E.: Proof of a conjecture of P. Erdös. Combinatorial Theory and its Applications, pp. 601–623. North-Holland (1970)

  12. Kierstead H.A., Kostochka A.V.: A short proof of the Hajnal–Szemerédi Theorem on equitable coloring. Comb. Prob. Comput. 17(2), 265–270 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Kierstead H.A., Kostochka A.V.: An Ore-type theorem on equitable coloring. J. Comb. Theory Ser. B 98(1), 226–234 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Komlós J., Sárközy G.N., Szemerédi E.: Blow-up lemma. Combinatorica 17, 109–123 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Komlós J., Sárközy G.N., Szemerédi E.: On the square of a hamiltonian cycle in dense graphs. Random Struct Algorithms 9(1-2), 193–211 (1996)

    Article  MATH  Google Scholar 

  16. Komlós J., Sárközy G.N., Szemerédi E.: Proof of the Seymour conjecture for large graphs. Ann. Comb. 2(1), 43–60 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Komlós J., Simonovits M.: Szemerédi’s regularity lemma and its applications in graph theory. Combinatorics: Paul Erdös is eighty 2, 295–352 (1996)

    Google Scholar 

  18. Kostochka, A.V., Yu, G.: Extremal problems on packing of graphs. Oberwolfach reports, No 1, pp. 55–57 (2006)

  19. Kostochka A.V., Yu G.: Ore-type graph packing problems. Comb. Prob. Comput. 16(1), 167–169 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kostochka, A.V., Yu, G.: Graphs containing every 2-factor. Graphs and Combinatorics (to appear)

  21. Kühn D., Osthus D., Treglown A.: An Ore-type theorem for perfect packings in graphs. SIAM J. Discrete Math. 23(3), 1335–1355 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Levitt I., Sárközy G.N., Szemerédi E.: How to avoid using the Regularity Lemma: Pósa’s conjecture revisited. Discrete Math. 310(3), 610–641 (2010)

    Article  Google Scholar 

  23. Ore O.: Note on Hamilton circuits. Am. Math. Mon. 67, 55 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  24. Seymour, P.: Problem section in Combinatorics. In: McDonough, T.P., Mavron, V.C. (eds.) Proceedings of the British Combinatorial Conference 1973, pp. 201–202. Cambridge University Press, Cambridge (1974)

  25. Szemerédi, E.: Regular partitions of graphs. Colloques Internationaux C.N.R.S. No. 260-Problemes Combinatoires et Theorie des Graphes, Orsay, pp. 399–401 (1976)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phong Châu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Châu, P. An Ore-Type Theorem on Hamiltonian Square Cycles. Graphs and Combinatorics 29, 795–834 (2013). https://doi.org/10.1007/s00373-012-1161-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-012-1161-3

Keywords

Navigation