Skip to main content
Log in

Stack Domination Density

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

There are infinite sequences of graphs {G n } where |G n | = n such that the minimal dominating sets for G i × H fall into predictable patterns, in light of which γ (G n × H) may be nearly linear in n; the coefficient of linearity may be regarded as the average density of the dominating set in the H-fibers of the product. The specific cases where the sequence {G n } consists of cycles or path is explored in detail, and the domination density of the Grötzsch graph is calculated. For several other sequences {G n }, the limit of this density can be seen to exist; in other cases the ratio \({\frac{\gamma (G_n \times H)}{\gamma (G_n)}}\) proves to be of greater interest, and also exists for several families of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayati, M., Gamarnik, D., Tetali, P.: Combinatorial approach to the interpolation method and scaling limits in sparse random graphs. In: STOC’10—Proceedings of the 2010 ACM International Symposium on Theory of Computing, pp. 105–114. ACM, New York (2010)

  2. Chang T.Y., Clark W.E., Hare E.O.: Domination numbers of complete grid graphs. I. Ars Combin. 38, 97–111 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Fisher D.C., McKenna P.A., Boyer E.D.: Hamiltonicity, diameter, domination, packing, and biclique partitions of Mycielski’s graphs. Discrete Appl. Math. 84(1–3), 93–105 (1998). doi:10.1016/S0166-218X(97)00126-1

    Article  MathSciNet  MATH  Google Scholar 

  4. Golay M.J.E.: Notes on digital coding. Proceedings of the IRE 37(6), 657 (1949). doi:10.1109/JRPROC.1949.233620

    Google Scholar 

  5. Jacobson M.S., Kinch L.F.: On the domination number of products of graphs. I. Ars Combin. 18, 33–44 (1984)

    MathSciNet  MATH  Google Scholar 

  6. Jacobson M.S., Kinch L.F.: On the domination of the products of graphs. II. Trees. J. Graph Theory 10(1), 97–106 (1986). doi:10.1002/jgt.3190100112

    Article  MathSciNet  MATH  Google Scholar 

  7. King E.L.C., Pelsmajer M.J.: Dominating sets in plane triangulations. Discrete Math. 310(17–18), 2221–2230 (2010). doi:10.1016/j.disc.2010.03.022

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu H., Pelsmajer M.J.: Dominating sets in triangulations on surfaces. Ars Math. Contemp. 4(1), 177–204 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Molloy M., Reed B.: Graph Colouring and the Probabilistic Method. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  10. Rubalcaba, R., Slater, P.J.: Efficient cartesian product layer domination. In: 22nd Cumberland Conference on Combinatorics, Graph Theory and Computing (2009)

  11. Vizing V.G.: Some unsolved problems in graph theory. Uspehi Mat. Nauk 23(6 (144), 117–134 (1968)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Jacob Wildstrom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brauch, T., Horn, P., Jobson, A. et al. Stack Domination Density. Graphs and Combinatorics 29, 1689–1711 (2013). https://doi.org/10.1007/s00373-012-1219-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-012-1219-2

Keywords

Mathematics Subject Classification (2000)

Navigation