Skip to main content
Log in

Critically Twin Primitive 2-Structures

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Unlike graphs, digraphs or binary relational structures, the 2-structures do not define precise links between vertices. They only yield an equivalence between links. Also 2-structures provide a suitable generalization in the framework of clan decomposition. Let \(\sigma \) be a 2-structure. A subset \(C\) of \(V(\sigma )\) is a clan of \(\sigma \) if for each \(v\in V(\sigma ){\setminus }C\), \(v\) is linked in the same way to all the elements of \(C\). A 2-structure \(\sigma \) is clan primitive if \(|V(\sigma )|\ge 3\) and all its clans are trivial. A clan primitive 2-structure \(\sigma \) is critically primitive if \(\sigma [V(\sigma ){\setminus }\{v\}]\) is not primitive for every \(v\in V(\sigma )\). A clan of cardinality 2 is a twin pair. A 2-structure \(\sigma \) is twin primitive if \(|V(\sigma )|\ge 3\) and \(\sigma \) has no twin pairs. A twin primitive 2-structure \(\sigma \) is critically twin primitive if \(\sigma [V(\sigma ){\setminus }\{v\}]\) is not twin primitive for every \(v\in V(\sigma )\). First, a twin decomposition is provided for 2-structures. Second, twin primitivity is studied by proving analogues of results on clan primitivity. Third, the notion of critically closed subset is introduced to characterize critically twin primitive 2-structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Birnbaum, Z.W., Esary, J.D.: Modules of coherent binary systems. J. Soc. Ind. Appl. Math. 13, 444–462 (1965)

    Article  MATH  Google Scholar 

  2. Bonizzoni, P.: Primitive 2-structures with the (n-2)-property. Theor. Comput. Sci. 132, 151–178 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boudabbous, I., Ille, P.: Critical and infinite directed graphs. Discret. Math. 307, 2415–2428 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boudabbous, Y., Ille, P.: Indecomposability graph and critical vertices of an indecomposable graph. Discret. Math. 309, 2839–2846 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boudabbous, Y., Salhi, A.: Les graphes critiquement sans duo. C. R. Acad. Sci. Paris 347, 463–466 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burley, M., Uhry, J.P.: Parity graphs. Ann. Discret. Math. 16, 1–26 (1982)

    Google Scholar 

  7. Cournier, A., Ille, P.: Minimal indecomposable graphs. Discret. Math. 183, 61–80 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Culus, J.-F., Jouve, B.: Convex circuit-free coloration of an oriented graph. European J. Comb. 30, 43–52 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ehrenfeucht, A., Harju, T., Rozenberg, G.: The Theory of 2-Structures. A Framework for Decomposition and Transformation of Graphs. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  10. Fraïssé, R.: On a decomposition of relations which generalizes the sum of ordering relations. Bull. Am. Math. Soc. 59, 389 (1953)

    Google Scholar 

  11. Gallai, T.: Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hungar. 18, 25–66 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  12. Godsil, C.D., Kocay, W.L.: Constructing graphs with pairs of pseudo-similar vertices. J. Comb. Theory Ser. B 32, 146–155 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ille, P.: Recognition problem in reconstruction for decomposable relations. In: Sands, B., Sauer, N., Woodrow, R. (eds.) Finite and Infinite Combinatorics in Sets and Logic, pp. 189–198. Kluwer Academic Publishers, Dordrecht (1993)

    Chapter  Google Scholar 

  14. Ille, P.: La décomposition intervallaire des structures binaires. La Gazette des Mathématiciens 104, 39–58 (2005)

    MathSciNet  Google Scholar 

  15. Maffray, F., Preissmann, M.: A translation of Tibor Gallai’s paper: Transitiv orientierbare Graphen. In: Ramirez-Alfonsin, J.L., Reed, B.A. (eds.) Perfect Graphs, pp. 25–66. Wiley, New York (2001)

    Google Scholar 

  16. Möhring, R.H.: Algorithmic aspects of the substitution decomposition in optimization over relations, sets systems and Boolean functions. Ann. Oper. Res. 4, 195–225 (1985)

    Article  MathSciNet  Google Scholar 

  17. Prins, G.: The automorphism group of a tree. Ph.D. thesis, University of Michigan (1957)

  18. Sabidussi, G.: The composition of graphs. Duke Math. J. 26, 693–696 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schmerl, J.H., Trotter, W.T.: Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures. Discret. Math. 113, 191–205 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank R.E. Woodrow for his helpful comments. They also thank three referees for their constructive suggestions. One of them raises the problem of the infinite case that leads us to add the last section.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Ille.

Additional information

The first Author would like to extend his sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project No RGP-VPP-056.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudabbous, Y., Ille, P., Jouve, B. et al. Critically Twin Primitive 2-Structures. Graphs and Combinatorics 31, 1223–1247 (2015). https://doi.org/10.1007/s00373-014-1436-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-014-1436-y

Keywords

Mathematics Subject Classification (2010)

Navigation