Skip to main content
Log in

Group Divisible Packings and Coverings with Any Minimum Leave and Minimum Excess

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

We examine all possible minimum leaves and minimum excesses for maximum group divisible packings and minimum group divisible coverings with triangles or kites, respectively. Necessary and sufficient conditions are established for their existences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel, R.J.R.: Existence of five MOLS of orders 18 and 60. J. Comb. Des. 23, 135–139 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abel, R.J.R., Bennett, F.E., Greig, M.: PBD-closure. In: Colbourn, C.J., Dinitz, J.H. (eds.) CRC Handbook of Combinatorial Designs, pp. 247–255. CRC Press, Boca Raton (2007)

    Google Scholar 

  3. Assaf, A.: Modified group divisible designs. Ars Comb. 29, 13–20 (1990)

    MathSciNet  MATH  Google Scholar 

  4. Bermond, J.C., Schönheim, J.: \(G\)-decomposition of \(K_n\), where \(G\) has four vertices or less. Discrete Math. 19, 113–120 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Billington, E.J., Lindner, C.C.: Maximum packings of uniform group divisible triple systems. J. Comb. Des. 4, 397–404 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brouwer, A.E.: Optimal packings of \(K_{4}\)’s into a \(K_{n}\). J. Comb. Theory A 26, 278–297 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang, Y., Lo Faro, G., Tripodi, A.: Tight blocking sets in some maximum packings of \(\lambda K_n\). Discrete Math. 308, 427–438 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang, Y., Lo Faro, G., Tripodi, A., Zhou, J.: TBSs in some minimum coverings. Discrete Math. 313, 278–285 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Colbourn, C.J., Ling, A.C.H.: A class of partial triple systems with applications in survey sampling. Commun. Stat. Theory Methods 27, 1009–1018 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Colbourn, C.J., Ling, A.C.H.: Balanced sampling plans with block size four excluding contiguous units. Aust. J. Comb. 20, 37–46 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Dukes, P.J., Feng, T., Ling, A.C.H.: Matching divisible designs with block size four. Discrete Math. (accepted)

  12. Fort Jr, M.K., Hedlund, G.A.: Minimum coverings of pairs by triples. Pac. J. Math. 8, 709–719 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  13. Francetić, N., Danziger, P., Mendelsohn, E.: Group divisible covering designs with block size 4: a type of covering array with row limit. J. Comb. Des. 21, 311–341 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ge, G., Wang, J., Wei, R.: MGDD with block size 4 and its application to sampling designs. Discrete Math. 272, 277–283 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Haggard, G.: On the function \(N(3,2,\lambda, v)\). Congr. Numer. 6, 243–250 (1972)

    MathSciNet  MATH  Google Scholar 

  16. Hanani, H.: Balanced incomplete block designs and related designs. Discrete Math. 11, 255–369 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Heinrich, K., Yin, J.: On group divisible covering designs. Discrete Math. 202, 101–112 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hoffman, D., Kirkpatrick, K.: \(G\)-designs of order \(n\) and index \(\lambda \) when \(G\) has \(5\) vertices or less. Aust. J. Comb. 18, 13–37 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Mendelsohn, E., Shalaby, N., Shen, H.: Nuclear designs. Ars Comb. 32, 225–238 (1991)

    MathSciNet  MATH  Google Scholar 

  20. Spencer, J.: Maximal consistent families for triples. J. Comb. Theory Ser. A 5, 1–8 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stanton, R.G., Rogers, M.J.: Packings and coverings by triples. Ars Comb. 13, 61–69 (1982)

    MathSciNet  MATH  Google Scholar 

  22. Stinson, D.R.: Combinatorial Designs: Constructions and Analysis. Springer, New York (2004)

    MATH  Google Scholar 

  23. Wang, H., Chang, Y.: Kite-group divisible designs of type \(g^{t}u^{1}\). Graphs Comb. 22, 545–571 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, J.: Incomplete group divisible designs with block size four. J. Comb. Des. 11, 442–455 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, J., Yin, J.: Existence of holey 3-GDDs of type \((u, g^tw^1)\). Discrete Math. 202, 249–269 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wilson, R.M.: Constructions and uses of pairwise balanced designs. Math. Centre Tracts 55, 18–41 (1974)

    MathSciNet  MATH  Google Scholar 

  27. Yin, J.: Packing designs with equal-sized holes. J. Stat. Plan. Inference 94, 393–403 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yin, J., Wang, J.: \((3,\lambda \))-group divisible covering designs. Aust. J. Comb. 15, 61–70 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Zhu, L.: Some recent developments on BIBDs and related designs. Discrete Math. 123, 189–214 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Feng.

Additional information

Supported by NSFC under Grants 11271042 and 11471032.

Appendices

Appendix 1: (3, 1)-MGDC of type \(5^4\) from [17]

The required (3, 1)-MGDC of type \(5^4\) is constructed on \(S \cup R\) where \(S=\{a_{ij}:1 \le i \le 3\) and \(1 \le j \le 5\}\) and \(R=\{x_j:1 \le j \le 5\}\) with \(S \cap R=\phi \). The four groups are R and \(\{a_{ij}:1\le j\le 5\}\) for \(1\le i\le 3\). All blocks are listed below.

$$\begin{aligned} \begin{array}{lllll} \{x_{1},a_{12},a_{24}\} &{} \{x_{1},a_{22},a_{34}\} &{} \{x_{1},a_{32},a_{14}\} &{} \{x_{1},a_{13},a_{25}\} &{} \{x_{1},a_{23},a_{35}\}\\ \{x_{1},a_{33},a_{15}\} &{} \{x_{2},a_{11},a_{25}\} &{} \{x_{2},a_{21},a_{35}\} &{} \{x_{2},a_{31},a_{15}\} &{} \{x_{2},a_{13},a_{24}\}\\ \{x_{2},a_{23},a_{34}\} &{} \{x_{2},a_{33},a_{14}\} &{} \{x_{3},a_{11},a_{24}\} &{} \{x_{3},a_{21},a_{34}\} &{} \{x_{3},a_{31},a_{14}\}\\ \{x_{3},a_{12},a_{25}\} &{} \{x_{3},a_{22},a_{35}\} &{} \{x_{3},a_{32},a_{15}\} &{} \{x_{4},a_{14},a_{22}\} &{} \{x_{4},a_{24},a_{32}\}\\ \{x_{4},a_{34},a_{12}\} &{} \{x_{4},a_{14},a_{21}\} &{} \{x_{4},a_{24},a_{31}\} &{} \{x_{4},a_{34},a_{11}\} &{} \{x_{4},a_{15},a_{23}\}\\ \{x_{4},a_{25},a_{33}\} &{} \{x_{4},a_{35},a_{13}\} &{} \{x_{5},a_{15},a_{21}\} &{} \{x_{5},a_{25},a_{31}\} &{} \{x_{5},a_{35},a_{11}\}\\ \{x_{5},a_{15},a_{22}\} &{} \{x_{5},a_{25},a_{32}\} &{} \{x_{5},a_{35},a_{12}\} &{} \{x_{5},a_{14},a_{23}\} &{} \{x_{5},a_{24},a_{33}\}\\ \{x_{5},a_{34},a_{13}\} &{} \{a_{14},a_{25},a_{34}\} &{} \{a_{24},a_{35},a_{14}\} &{} \{a_{34},a_{15},a_{24}\} &{} \{a_{12},a_{21},a_{33}\}\\ \{a_{22},a_{31},a_{13}\} &{} \{a_{32},a_{11},a_{23}\} &{} \{a_{15},a_{25},a_{35}\} &{} \{x_{1},a_{11},a_{21}\} &{} \{x_{1},a_{11},a_{31}\}\\ \{x_{2},a_{12},a_{22}\} &{} \{x_{2},a_{22},a_{32}\} &{} \{x_{3},a_{13},a_{33}\} &{} \{x_{3},a_{23},a_{33}\} &{} \{a_{11},a_{22},a_{33}\}\\ \{a_{13},a_{23},a_{31}\} &{} \{a_{12},a_{21},a_{31}\} &{} \{a_{13},a_{21},a_{32}\} &{} \{a_{12},a_{32},a_{23}\} &{} \end{array} \end{aligned}$$

The excess graph contains edges: \(\{x_{4},a_{14}\}\), \(\{x_{4},a_{24}\}\), \(\{x_{4},a_{34}\}\), \(\{x_{5},a_{15}\}\), \(\{x_{5},a_{25}\}\), \(\{x_{5},a_{35}\}\), \(\{x_{1},a_{11}\}\), \(\{x_{2},a_{22}\}\), \(\{x_{3},a_{33}\}\), \(\{a_{12},a_{21}\}\), \(\{a_{13},a_{31}\}\), \(\{a_{23},a_{32}\}\).

Appendix 2: (3, 1)-IGDC of type \((11,5)^4\) in Lemma 4.5

$$\begin{aligned} \begin{array}{llllll} \{0,2,25\}&{} \{3,4,25\}&{} \{6,7,25\}&{} \{8,10,25\}&{} \{11,12,25\}&{} \{14,15,25\}\\ \{16,18,25\}&{} \{19,20,25\}&{} \{22,23,25\}&{} \{0,1,27\}&{} \{4,10,27\}&{} \{5,18,27\}\\ \{2,8,27\}&{} \{6,9,27\}&{} \{12,13,27\}&{} \{14,16,27\}&{} \{17,20,27\}&{} \{21,22,27\}\\ \{0,5,31\}&{} \{1,10,31\}&{} \{2,16,31\}&{} \{6,12,31\}&{} \{4,17,31\}&{} \{8,21,31\}\\ \{9,14,31\}&{} \{13,18,31\}&{} \{20,22,31\}&{} \{0,6,35\}&{} \{0,9,39\}&{} \{0,10,43\}\\ \{5,10,39\}&{} \{1,16,39\}&{} \{4,22,39\}&{} \{6,8,39\}&{} \{2,13,39\}&{} \{12,17,39\}\\ \{14,20,39\}&{} \{18,21,39\}&{} \{9,10,35\}&{} \{5,16,35\}&{} \{4,13,35\}&{} \{1,22,35\}\\ \{2,8,35\}&{} \{14,17,35\}&{} \{12,18,35\}&{} \{20,21,35\}&{} \{6,13,43\}&{} \{9,16,43\}\\ \{2,17,43\}&{} \{5,22,43\}&{} \{1,8,43\}&{} \{12,14,43\}&{} \{18,20,43\}&{} \{4,21,43\}\\ \{1,4,26\}&{} \{1,4,30\}&{} \{4,5,34\}&{} \{4,7,38\}&{} \{4,9,42\}&{} \{1,3,38\}\\ \{5,12,38\}&{} \{9,20,38\}&{} \{8,11,38\}&{} \{0,13,38\}&{} \{15,16,38\}&{} \{17,19,38\}\\ \{21,23,38\}&{} \{1,2,12\}&{} \{1,7,34\}&{} \{1,11,42\}&{} \{1,6,20\}&{} \{1,14,24\}\\ \{1,15,28\}&{} \{1,18,32\}&{} \{1,19,36\}&{} \{1,23,40\}&{} \{3,20,34\}&{} \{9,12,34\}\\ \{8,13,34\}&{} \{0,15,34\}&{} \{16,23,34\}&{} \{11,17,34\}&{} \{19,21,34\}&{} \{5,20,42\}\\ \{8,15,42\}&{} \{0,23,42\}&{} \{3,12,42\}&{} \{7,21,42\}&{} \{13,16,42\}&{} \{17,19,42\}\\ \{10,12,21\}&{} \{7,12,26\}&{} \{12,15,30\}&{} \{12,15,29\}&{} \{12,19,33\}&{} \{12,22,37\}\\ \{12,23,41\}&{} \{11,20,26\}&{} \{7,20,30\}&{} \{0,3,26\}&{} \{15,21,26\}&{} \{5,8,26\}\\ \{9,19,26\}&{} \{13,16,26\}&{} \{17,23,26\}&{} \{3,5,30\}&{} \{9,11,30\}&{} \{13,19,30\}\\ \{8,23,30\}&{} \{0,17,30\}&{} \{16,21,30\}&{} \{0,3,21\}&{} \{3,8,9\}&{} \{7,8,17\}\\ \{8,14,33\}&{} \{8,18,37\}&{} \{8,19,29\}&{} \{8,22,41\}&{} \{0,7,33\}&{} \{0,11,22\}\\ \{0,14,29\}&{} \{0,19,37\}&{} \{0,18,41\}&{} \{2,20,29\}&{} \{10,20,33\}&{} \{14,20,41\}\\ \{13,15,20\}&{} \{20,23,37\}&{} \{2,7,41\}&{} \{3,6,41\}&{} \{4,15,41\}&{} \{10,11,41\}\\ \{16,19,41\}&{} \{7,10,37\}&{} \{7,16,22\}&{} \{7,18,29\}&{} \{2,15,37\}&{} \{3,14,37\}\\ \{4,6,37\}&{} \{11,16,37\}&{} \{4,11,29\}&{} \{4,14,19\}&{} \{2,4,33\}&{} \{4,18,23\}\\ \{6,16,29\}&{} \{3,16,33\}&{} \{10,16,17\}&{} \{3,10,29\}&{} \{22,23,29\}&{} \{15,22,33\}\\ \{11,18,33\}&{} \{6,23,33\}&{} \{5,7,24\}&{} \{18,19,24\}&{} \{10,19,28\}&{} \{19,22,32\}\\ \{2,5,19\}&{} \{6,19,40\}&{} \{2,3,32\}&{} \{6,17,32\}&{} \{11,21,32\}&{} \{2,21,24\}\\ \{2,9,40\}&{} \{2,11,28\}&{} \{2,23,36\}&{} \{6,21,36\}&{} \{5,6,11\}&{} \{6,9,28\}\\ \{6,15,24\}&{} \{7,9,36\}&{} \{9,15,18\}&{} \{9,22,24\}&{} \{9,23,32\}&{} \{3,17,24\}\\ \{5,23,28\}&{} \{13,14,23\}&{} \{10,23,24\}&{} \{11,13,24\}&{} \{5,14,36\}&{} \{11,14,40\}\\ \{10,11,36\}&{} \{14,21,28\}&{} \{7,14,32\}&{} \{5,7,40\}&{} \{5,15,32\}&{} \{7,13,28\}\\ \{10,15,40\}&{} \{10,13,32\}&{} \{15,17,36\}&{} \{18,21,40\}&{} \{17,18,28\}&{} \{3,18,36\}\\ \{3,22,28\}&{} \{3,13,40\}&{} \{13,22,36\}&{} \{17,22,40\} \end{array} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Chang, Y. & Feng, T. Group Divisible Packings and Coverings with Any Minimum Leave and Minimum Excess. Graphs and Combinatorics 32, 1423–1446 (2016). https://doi.org/10.1007/s00373-015-1644-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-015-1644-0

Keywords

Navigation