Skip to main content
Log in

Degree Sequence Conditions for Maximally Edge-Connected and Super Edge-Connected Hypergraphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let H be a connected hypergraph with minimum degree \(\delta\) and edge-connectivity \(\lambda\). The hypergraph H is maximally edge-connected if \(\lambda = \delta\), and it is super edge-connected or super-\(\lambda\), if every minimum edge-cut consists of edges incident with some vertex. There are several degree sequence conditions, for example, Goldsmith and White (Discrete Math 23: 31–36, 1978) and Bollobás (Discrete Math 28:321–323, 1979) etc. for maximally edge-connected graphs and super-\(\lambda\) graphs. In this paper, we generalize these and some other degree sequence conditions to uniform hypergraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bollobás, B.: On graphs with equal edge-connectivity and minimum degree. Discrete Math. 28, 321–323 (1979)

    Article  MathSciNet  Google Scholar 

  2. Chartrand, G.: A graph-theoretic approach to a communications problem. SIAM J. Appl. Math. 14, 778–781 (1966)

    Article  MathSciNet  Google Scholar 

  3. Dankelmann, P., Volkmann, L.: Degree sequence conditions for maxiamlly edge-connected graphs and digraphs. J. Graph Theory 26, 27–34 (1997)

    Article  MathSciNet  Google Scholar 

  4. Dankelmann, P., Meierling, D.: Maximally edge-connected hypergraphs. Discrete Math. 339, 33–38 (2016)

    Article  MathSciNet  Google Scholar 

  5. Dewar, M., Pike, D., Proos, J.: Connectivity in hypergraphs. Can. Math. Bull. 61, 252–271 (2018)

    Article  MathSciNet  Google Scholar 

  6. Goldsmith, D.L., White, A.T.: On graphs with equal edge-connectivity and minimum degree. Discrete Math. 23, 31–36 (1978)

    Article  MathSciNet  Google Scholar 

  7. Gu, X.F., Lai, H.J.: Realizing degree sequences with \(k\)-edge-connected uniform hypergraphs. Discrete Math. 313, 1394–1400 (2013)

    Article  MathSciNet  Google Scholar 

  8. Hellwig, A., Volkmann, L.: Maximally edge-connected and vertex-connected graphs and digraphs—a survey. Discrete Math. 308, 3265–3296 (2008)

    Article  MathSciNet  Google Scholar 

  9. Kelmans, A.K.: Asymptonic formulas for the probability of \(k\)-connectedness of random graphs. Theory Probab. Appl. 17, 243–254 (1972)

    Article  Google Scholar 

  10. Shan, E.F., Zhao, J., Zhao, L.Y.: Maximally connected \(p\)-partite uniform hypergraphs. Discrete Appl. Math. (2019). https://doi.org/10.1016/j.dam.2018.11.004

    Article  MathSciNet  MATH  Google Scholar 

  11. Tong, L.K., Shan, E.F.: Sufficient conditions for maximally edge-connected hypergraphs. J. Operat. Resear. Soc. Chin. (2018). https://doi.org/10.1007/s40305-018-0224-4

    Article  Google Scholar 

  12. Volkmann, L.: Degree sequence conditions for super edge-connected graphs and digraphs. Ars Comb. 67, 237–249 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Whitney, H.: Congruent graphs and the connectivity of a graph. Amer. J. Math. 54, 150–168 (1932)

    Article  MathSciNet  Google Scholar 

  14. Zhao, S., Meng, J.X.: Sufficient conditions for hypergraphs to be maximally edge-connected hypergraphs. Appl. Math. Comput. 333, 362–368 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jixiang Meng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research is supported by NSFC (Nos. 11531011, 11861066), Tianshan Youth Project (2018Q066).

Appendix

Appendix

If \(r = 2\), then \(t - 1 = \delta\) and \((t - 1)\big [\left( {\begin{array}{c}n - t\\ r - 1\end{array}}\right) + \left( {\begin{array}{c}t\\ r - 1\end{array}}\right) \big ] = \delta n > \delta n - 1 = (t - 1)\big [\left( {\begin{array}{c}t - 1\\ r - 1\end{array}}\right) + \left( {\begin{array}{c}n - t - 1\\ r - 1\end{array}}\right) \big ] + r(\delta - 1) + 1\). It remains to show that the inequality holds for the case \(r \ge 3\). Since \(n \ge 2t\), we have

$$\begin{aligned} \begin{aligned}&(t - 1)\bigg [\left( {\begin{array}{c}t - 1\\ r - 2\end{array}}\right) + \left( {\begin{array}{c}n - t - 1\\ r - 2\end{array}}\right) \bigg ]\\&\quad \ge 2(t - 1)\left( {\begin{array}{c}t - 1\\ r - 2\end{array}}\right) \\&\quad = t\left( {\begin{array}{c}t - 1\\ r - 2\end{array}}\right) + \left( {\begin{array}{c}t\\ r - 1\end{array}}\right) + (t - 3)\left( {\begin{array}{c}t - 1\\ r - 2\end{array}}\right) - \left( {\begin{array}{c}t - 1\\ r - 1\end{array}}\right) . \end{aligned} \end{aligned}$$
(A1)

We proceed to show

$$\begin{aligned} \begin{aligned} (t - 3)\left( {\begin{array}{c}t - 1\\ r - 2\end{array}}\right) - \left( {\begin{array}{c}t - 1\\ r - 1\end{array}}\right) > -r. \end{aligned} \end{aligned}$$
(A2)

If \(r = 3\), \((t - 3)(t - 1) - \frac{(t - 1)(t - 2)}{2} + 3 = \frac{1}{2}t^{2} - \frac{5}{2}t + 5 > 0\) holds. If \(r \ge 4\), by \(\left( {\begin{array}{c}t\\ r - 1\end{array}}\right) > \delta \ge 1\), we have \(t > r - 1 \ge 3\) and \(\left( {\begin{array}{c}t - 1\\ r - 1\end{array}}\right) - r = (\frac{t}{r - 1} - 1)\left( {\begin{array}{c}t - 1\\ r - 2\end{array}}\right) - r < (t - 3)\left( {\begin{array}{c}t - 1\\ r - 2\end{array}}\right)\). Thus, the inequality (A2) holds. Therefore, combining the inequalities (A1) and (A2), we have

$$\begin{aligned} \begin{aligned}&(t - 1)\bigg [\left( {\begin{array}{c}n - t\\ r - 1\end{array}}\right) + \left( {\begin{array}{c}t\\ r - 1\end{array}}\right) \bigg ]\\&\quad =(t - 1)\bigg [\left( {\begin{array}{c}t - 1\\ r - 1\end{array}}\right) + \left( {\begin{array}{c}n - t - 1\\ r - 1\end{array}}\right) + \left( {\begin{array}{c}t - 1\\ r - 2\end{array}}\right) + \left( {\begin{array}{c}n - t - 1\\ r - 2\end{array}}\right) \bigg ]\\&\quad \ge (t - 1)\bigg [\left( {\begin{array}{c}t - 1\\ r - 1\end{array}}\right) + \left( {\begin{array}{c}n - t - 1\\ r - 1\end{array}}\right) \bigg ] + t\left( {\begin{array}{c}t - 1\\ r - 2\end{array}}\right) + \left( {\begin{array}{c}t\\ r - 1\end{array}}\right) \\&\qquad + (t - 3)\left( {\begin{array}{c}t - 1\\ r - 2\end{array}}\right) - \left( {\begin{array}{c}t - 1\\ r - 1\end{array}}\right) \\&\quad > (t - 1)\bigg [\left( {\begin{array}{c}t - 1\\ r - 1\end{array}}\right) + \left( {\begin{array}{c}n - t - 1\\ r - 1\end{array}}\right) \bigg ] + t\left( {\begin{array}{c}t - 1\\ r - 2\end{array}}\right) + \left( {\begin{array}{c}t\\ r - 1\end{array}}\right) - r\\&\quad = (t - 1)\bigg [\left( {\begin{array}{c}t - 1\\ r - 1\end{array}}\right) + \left( {\begin{array}{c}n - t - 1\\ r - 1\end{array}}\right) \bigg ] + r\left( {\begin{array}{c}t\\ r - 1\end{array}}\right) - r\\&\quad \ge (t - 1)\bigg [\left( {\begin{array}{c}t - 1\\ r - 1\end{array}}\right) + \left( {\begin{array}{c}n - t - 1\\ r - 1\end{array}}\right) \bigg ] + r(\delta - 1) + 1. \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Tian, Y. & Meng, J. Degree Sequence Conditions for Maximally Edge-Connected and Super Edge-Connected Hypergraphs. Graphs and Combinatorics 36, 1065–1078 (2020). https://doi.org/10.1007/s00373-020-02165-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-020-02165-w

Keywords

Navigation