Skip to main content
Log in

Detailed and abstract phase-locked attractor network models of early olfactory systems

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Across species, primary olfactory centers show similarities both in their cellular organization and their types of olfactory information coding. In this article, we consider an excitatory-inhibitory spiking neural network as a model of early olfactory systems (antennal lobe for insects, olfactory bulb for vertebrates). In line with experimental results, we show that, in our network, odor-like stimuli evoke synchronization of excitatory cells, phase-locked to the oscillations of the local field potential. As revealed by a mathematical analysis, the phase-locking probability of excitatory cells is given by an inverted-U function and the firing probability of inhibitory cells is well described by a sigmoid function. These neural response functions are used to reduce the spiking model to a more abstract model with discrete-time dynamics (oscillatory cycles) and binary-state neurons (phase-locked or not). An iterative map, built for explaining the dynamics of the binary model, reveals that it converges to fixed point attractors similar to those obtained with the spiking model. This result is consistent with odor-specific attractors found in recent experimental studies. It also provides insights for designing bio-inspired olfactory associative memories applicable for data analysis in electronic noses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  • Bazhenov M, Stopfer M, Rabinovich M, Huerta R, Abarbanel H, Sejnowski T, Laurent, G (2001). Model of transient synchronization in the locust antennal lobe. Neuron 30:553–567

    Article  PubMed  CAS  Google Scholar 

  • Börgers C, Kopell N (2003) Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neur Comput 15:509–538

    Article  Google Scholar 

  • Buonviso N, Amat C, Litaudon P, Roux S, Royet J.-P, Farget V (2003) Rythm sequence through the olfactory bulb layers during the time window of a respiratory cycle. European J Neurosci 17:1811–1819

    Article  Google Scholar 

  • Chow C, White J, Ritt J, Kopell N (1998) Frequency control in synchronized networks of inhibitory neurons. J Comput Neurosci 5:407–420

    Article  PubMed  CAS  Google Scholar 

  • Cortes C, Vapnik V (1995) Support vector networks. Machine Learning 20:1–25

    Google Scholar 

  • Davison A, Feng J, Brown D (2003) Dendrodendritic inhibition and stimulated odor responses in a detailed olfactory bulb network model. J Neurophysiology 90:1921–1935

    Article  CAS  Google Scholar 

  • Eeckman F, Freeman W (1991) Asymmetric sigmoid non-linearity in the rat olfactory system. Brain Res 557:13–21

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout B (1996) Type 1 membranes, phase resetting curves, and synchrony. Neural Comput 8:979–1001

    Article  PubMed  CAS  Google Scholar 

  • Friedrich R, Habermann C, Laurent G (2004) Multiplexing using synchrony in the zebrafish olfactory bulb. Nat Neurosci 7:862–871

    Article  PubMed  CAS  Google Scholar 

  • Friedrich R, Laurent G (2001) Dynamic optimization of odor representations by slow temporal patterning of mitral cells activity. Sci 291:889–894

    Article  CAS  Google Scholar 

  • Gálan R, Sachse S, Galizia C, Herz A (2004) Odor-specific attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification. Neural Comput 16:999–1012

    Article  Google Scholar 

  • Gerstner W, Kistler W (2002) Spiking Neuron Models - Single Neurons, Populations, Plasticity Cambridge Univ. Press.

    Google Scholar 

  • Graham B, Willshaw D (1995) Improving recall from an associative memory. Biol Cybernet 72:337–346

    Article  Google Scholar 

  • Hendin O, Horn D, Tsodyks M (1997) The role of inhibition in an associative memory model of the olfactory bulb. J Comput Neurosci 4:173–182

    Article  PubMed  CAS  Google Scholar 

  • Hirase H, Recce M (1996) A search for the optimal thresholding sequence in an associative memory. Network: Computation in Neural Systems 7:741–756

    Article  Google Scholar 

  • Holub A, Laurent G, Perona P (2002) A digital antennal lobe for pattern equalization: analysis and design, Volume 15. Advances in Neural Information Processing Systems

    Google Scholar 

  • Hoppenstead F, Izhikevich, E (2002) Canonical neural models in Brain theory and neural networks, 2nd Ed. MIT Press, Cambridge, MA.

    Google Scholar 

  • Horn D, Usher M (1991) Parallel activation of memories in an oscillatory neural network. Neural Comput 3:31–43

    Google Scholar 

  • Horn D, Usher M (2003) Neural networks with dynamical thresholds. Phys Rev A 40:1036–1044

    Article  Google Scholar 

  • Hosler J, Buxton K, Smith B (2000) Impairment of olfactory discrimination by blockade of gaba and nitric oxide activity in the honey bee antennal lobes. Behavioral Neurosci 114:514–525

    Article  CAS  Google Scholar 

  • Kashiwadani H, Sasaki Y, Uchida N, Mori K (1999) Synchronized oscillatory discharges of mitral/tufted cells with different molecular receptive ranges in the rabbit olfactory bulb. J Neurophysiology 82:1786–1792

    CAS  Google Scholar 

  • Lagier S, Carleton A, Lledo P-M (2004) Interplay between local gabaergic interneurons and relay neurons generate γ oscillations in the rat olfactory bulb. The J Neurosci 24:4382–4392

    Article  CAS  Google Scholar 

  • Laurent G (1996) Dynamical neural assemblies. TINS 19:489–496

    PubMed  CAS  Google Scholar 

  • Laurent G (1999) A systems perspective on early olfactory coding. Sci 286:723–728

    Article  CAS  Google Scholar 

  • Laurent G, Davidowitz H (1994) Encoding of olfactory information with oscillating neural assemblies. Sci 265:1872–1875

    Article  Google Scholar 

  • Laurent G, Stopfer M, Friedrich R, Rabinovich M, Volkovskii A, Abarbanel H (2001). Odor coding as an active, dynamical process: experiments, computation and theory. Annu. Rev. Neurosci 24:263–297

    Article  PubMed  CAS  Google Scholar 

  • Laurent G, Wehr M, Davidowitz D (1996) Temporal representations of odors in an olfactory network. The J Neurosci 16:3837–3847

    CAS  Google Scholar 

  • Li Z, Hertz J (2000) Odor recognition and segmentation by a model olfactory bulb and cortex. Network: Comput in Neural Systems 11:83–102

    Article  CAS  Google Scholar 

  • Li Z, Hopfield J (1989). A model of the olfactory bulb and its oscillatory processing. Biol Cybernet 61:379–392

    Article  CAS  Google Scholar 

  • Linster C, Masson C (1996) A neural model of olfactory sensory memory in the honeybee’s antennal lobe. Neural Computation 8:94–114

    Google Scholar 

  • Margrie T, Schaefer A (2003) Theta oscillation coupled spike latencies yield computational vigour in a mammalian sensory system. J Physiol 46:363–374

    Article  CAS  Google Scholar 

  • Martinez D (2005) Oscillatory synchronization requires precise and balanced feedback inhibition in a model of the insect antennal lobe. Neural Comput, In press

    Google Scholar 

  • Ng M, Roorda R, Lima S, Zemelman B, Morcillo P, Miesenbock G (2002) Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36:463–474

    Article  PubMed  CAS  Google Scholar 

  • Nusser Z, Kay L, Laurent G, Homanics G, Mody I (2001) Disruption of gaba a receptors on gabaergic interneurons leads to increased oscillatory power in the olfactory bulb network. J Neurophysiol 86:2823–2833

    PubMed  CAS  Google Scholar 

  • Palm G (1980) On associative memory. Biol Cybernet 36:19–31

    Article  CAS  Google Scholar 

  • Perez-Orive J, Mazor, Turner G, Cassenaer S, Wilson R, Laurent G (2002) Oscillations and sparsening of odor representations in the mushroom bodies. Sci 297:359–365

    Article  CAS  Google Scholar 

  • Quenet B, Horn D (2003). The dynamic neural filter: a binary model of spatiotemporal coding. Neural Comput 15:309–329

    Article  PubMed  Google Scholar 

  • Raman B, Gutierrez-Osuna R (2004) Chemosensory processing in a spiking model of the olfactory bulb: chemotopic convergence and center surround inhibition. Advances in Neural Information Processing Systems 17 (NIPS 2004), Vancouver, BC, December, 2004 pp 13–16

    Google Scholar 

  • Ravel N, Chabaud P, Martin C, Gaveau V, Hugues E, Tallon-Baudry C, Bertrand O, Gervais R (2003) Olfactory learning modifies the expression of odour-induced oscillatory responses in the gamma (60-90 hz) and beta (15-40 hz) bands in the rat olfactory bulb. European J Neurosci 17:350–358

    Article  Google Scholar 

  • Rubin J, Bose A (2004) Localized activity patterns in excitatory neuronal networks. Networks: Comput Neural Syst 15:133–158

    Article  Google Scholar 

  • Sachse S, Galizia C (2003) The coding of odour-intensity in the honeybee antennal lobe: local computation optimizes odour representation. European J Neurosci 18:2119–2132

    Article  Google Scholar 

  • Schein A, Saul L, Ungar L (2003) A generalized linear model for principal component analysis of binary data. Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics (matlab code available at http://www.cis.upenn.edu/∼ais) pp 14–21

    Google Scholar 

  • Schwencker F, Sommer F, Palm G (1996) Iterative retrieval of sparsely coded associative memory patterns. Neural Networks 9:445–455

    Article  Google Scholar 

  • Stopfer M, Bhagavan S, Smith, B, Laurent G (1997) Impaired odor discrimination on desynchronisation of odor-encoding neural assemblies. Nat 390:70–74

    Article  CAS  Google Scholar 

  • Stopfer M, Jayaraman V, Laurent G (2003) Intensity versus identity coding in the olfactory system. Neuron 39:991–1004

    Article  PubMed  CAS  Google Scholar 

  • Stopfer M, Laurent G (1999) Short-term memory in olfactory network dynamics. Nat 402:664–668

    Article  CAS  Google Scholar 

  • Strausfeld N, Hildebrand J (1999)s Olfactory systems: common design, uncommon origins? Curr Opinion in Neurobiol 9:634–639

    Article  CAS  Google Scholar 

  • Wehr M, Laurent G (1996) Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nat 384:162–166

    Article  CAS  Google Scholar 

  • Willshaw D, Buneman O, Longuet-Higgins H (1969) Non-holographic associative memory. Nat 222:960–962

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Martinez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, D. Detailed and abstract phase-locked attractor network models of early olfactory systems. Biol Cybern 93, 355–365 (2005). https://doi.org/10.1007/s00422-005-0010-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-005-0010-3

Keywords