Skip to main content
Log in

Population approach to a neural discrimination task

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

This article gives insights into the possible neuronal processes involved in visual discrimination. We study the performance of a spiking network of Integrate-and-Fire (IF) neurons when performing a benchmark discrimination task. The task we adopted consists of determining the direction of moving dots in a noisy context using similar stimuli to those in the experiments of Newsome and colleagues. We present a neural model that performs the discrimination involved in this task. By varying the synaptic parameters of the IF neurons, we illustrate the counter-intuitive importance of the second-order statistics (input noise) in improving the discrimination accuracy of the model. We show that measuring the Firing Rate (FR) over a population enables the model to discriminate in realistic times, and even surprisingly significantly increases its discrimination accuracy over the single neuron case, despite the faster processing. We also show that increasing the input noise increases the discrimination accuracy but only at the expense of the speed at which we can read out the FR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Britten K (2003) The middle temporal area:Motion processing and the link to perception. In: Chalupa WJ (eds) The visual neurosciences. MIT Press, Boston

    Google Scholar 

  • Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA (1996) A relationship between behavioral choice and the visual responses of neurons in macaque MT. Visual Neurosci 13:87–100

    Article  CAS  Google Scholar 

  • Britten KH, Shadlen MN, Newsome WT, Movshon JA (1992) The analysis of visual motion : a comparison of neuronal and psychophysical performance. J Neurosci 12:2331–2355

    PubMed  Google Scholar 

  • Deng Y, Williams P, Liu F, Feng JF (2003) Discriminating between different input signals via single neuron activity. J Phys A: Math Gen 36(50):12379–12398

    Article  Google Scholar 

  • Ditterich J, Mazurek M, Shadlen MN (2003) Microstimulation of visual cortex affects the speed of perceptual decisions. Nature Neurosci 6(8):891–898

    Article  PubMed  CAS  Google Scholar 

  • Durrant S, Kendrick K, Feng JF (2005) Algorithms for exploiting negative correlation. Biosystems (accepted)

  • Feller W (1971) An introduction to probability theory and its applications, vol. 2, 2nd edition. Wiley, New York

    Google Scholar 

  • Feng JF (2001) Is the integrate-and-fire model good enough? - a review. Neural Netw 14:955–975

    Article  PubMed  CAS  Google Scholar 

  • Feng JF (2003) Effects of correlated and synchronized stochastic inputs toleaky integrator neuronal model. J Theor Biol 222:151162

    Article  Google Scholar 

  • Feng JF, Liu F (2002) A modelling study on discrimination tasks. Biosystems 67:67–73

    Article  PubMed  Google Scholar 

  • Feng JF, Wei G (2001) Increasing inhibitory inputs increases neuronal firing rate. J Phys A: Math Gen 34:7493–7510

    Article  Google Scholar 

  • Gaillard B, Buxton H, Feng JF (2005). Neuronal model of decision making. In: Feng J, Qian M, Jost J (eds) Networks: from biology to theory. Springer, Berlin Heidelberg New York, (in preparation)

    Google Scholar 

  • Gerstner W, Kistler W (2002) Spiking neuron models single neurons, populations plasticity. Cambridge University Press, Cambridge

    Google Scholar 

  • Gold JI, Shadlen MN (2003) The influence of behavioral context on the representation of a perceptual decision in developing oculomotor commands. J Neurosci 23:632–651

    PubMed  CAS  Google Scholar 

  • Heeger DJ, Simoncelli EP, Carandini M, Movshon JA (1995) Computational models of cortical visual processing. In: Proc national academy of science, vol. 93, pp 623–627

  • Heekeren HR, Marrett S, Bandettini PA, Ungerleider LG (2004) A general mechanism for perceptual decision-making in the human brain. Nature 431:859–862

    Article  PubMed  CAS  Google Scholar 

  • Koch C (1999) Biophysics of computation: information processing in single neurons. Oxford University Press, Oxford

    Google Scholar 

  • Lee DK, Itti L, Koch C, Braun J (1999) Attention activates winner-take-all competition amongst visual filters. Nature Neurosci 2: 375–381

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Newsome WT (2003) Functional organisation of speed tuned neurons in visual area MT. J Neurophysiol 89:246–256

    Article  PubMed  Google Scholar 

  • Parker AJ, Newsome WT (1998) Sense and the single neuron: Probing the physiology of perception. Annu Rev Neurosci 21:227–277

    Article  PubMed  CAS  Google Scholar 

  • Rao RPN (2004) Bayesian computation in recurrent neural circuits. Neural Comput 16(1):1–38

    Article  PubMed  Google Scholar 

  • Ratcliff R, Rouder JN (1998) Modeling response times for two-choice decisions. Psychol Sci 9:347–356

    Article  Google Scholar 

  • Ratcliff R, Van Zandt T, Mc Koon G (1999) Connectionnist and diffusion models of reaction time. Psychol Rev 106:261–300

    Article  PubMed  CAS  Google Scholar 

  • Ricciardi LM, Sato S (1990) Diffusion process and first-passage-times problems. In: Ricciardi LM (eds) Lectures in applied mathematics and informatics. Manchester University Press, Manchester

    Google Scholar 

  • Romo R, Hernandez A, Zainos A, Salinas E (2003) Correlated neuronal discharges that increase coding efficiency during perceptual discrimination. Neuron 38:649–657

    Article  PubMed  CAS  Google Scholar 

  • Rorie AE, Newsome WT (2005) A general mechanism for decision-making in the human brain? Trends Cogn Sci 9 (advanced online publication)

  • Shadlen MN, Gold JI (2004). The neurophysiology of decision making as a window on cognition. In: Gazzaniga MN (eds) The cognitive neurosciences. MIT Press, Cambridge

    Google Scholar 

  • Shadlen MN, Newsome WT (2001) Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol 86:1916–1935

    PubMed  CAS  Google Scholar 

  • Shadlen MN, Newsome WT (1996) Motion perception: seeing and deciding. PNAS 93:628–633

    Article  PubMed  CAS  Google Scholar 

  • Sheth BR, Sharma J, Rao SC, Sur M (1996) Orientation maps of subjective contours in visual cortex. Sci 274:2110-2115

    Article  CAS  Google Scholar 

  • Simoncelli EP, Heeger DJ (1998) A model of neuronal responses in visual area MT. Vision Res 38:743–761

    Article  PubMed  CAS  Google Scholar 

  • Sugrue LP, Corrado GS, Newsome WT (2005) Choosing the greater of two goods: neural currencies for valuation and decision making. Nature Rev Neurosci 6(5):363–75

    Article  CAS  Google Scholar 

  • Tovée Martin J (1996) An introduction to the visual system. Cambridge University Press, Cambridge

    Google Scholar 

  • Tuckwell HC (1988) Introduction to theoretical neurobiology, vol 2. Cambridge University Press, Cambridge

    Google Scholar 

  • Usher M, McClelland J (2001) On the time course of perceptual choice: the leaky competing accumulator model. Psychol Rev 108:550–592

    Article  PubMed  CAS  Google Scholar 

  • VanRullen R, Koch C (2003) Is perception discrete or continuous? Trends Cognit Sci 7(5):207–213

    Article  Google Scholar 

  • VanRullen R, Thorpe S (2000) Is it a bird is it a plane? Ultra-rapid visual categorization of natural and artifactual categories. Perception 30(6):655–668

    Article  Google Scholar 

  • VanRullen R, Thorpe S (2001) Rate coding vs temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput 13:1255–1283

    Article  PubMed  CAS  Google Scholar 

  • Wang XJ (2002) Probabilistic Decision Making by Slow Reverberation in Cortical Circuits. Neuron 36:955–968

    Article  PubMed  CAS  Google Scholar 

  • Zohary E, Shadlen MN, Newsome WT (1994) Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370:140–143

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Gaillard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaillard, B., Buxton, H. & Feng, J. Population approach to a neural discrimination task. Biol Cybern 94, 180–191 (2006). https://doi.org/10.1007/s00422-005-0039-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-005-0039-3

Keywords

Navigation