Skip to main content
Log in

Towards On-line Adaptation of Neuro-prostheses with Neuronal Evaluation Signals

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Many experiments have successfully demonstrated that prosthetic devices for restoring lost body functions can in principle be controlled by brain signals. However, stable long-term application of these devices, required for paralyzed patients, may suffer substantially from on-going signal changes for example adapting neural activities or movements of the electrodes recording brain activity. These changes currently require tedious re-learning procedures which are conducted and supervised under laboratory conditions, hampering the everyday use of such devices. As an efficient alternative to current methods we here propose an on-line adaptation scheme that exploits a hypothetical secondary signal source from brain regions reflecting the user’s affective evaluation of the current neuro- prosthetic’s performance. For demonstrating the feasibility of our idea, we simulate a typical prosthetic setup controlling a virtual robotic arm. Hereby we use the additional, hypothetical evaluation signal to adapt the decoding of the intended arm movement which is subjected to large non-stationarities. Even with weak signals and high noise levels typically encountered in recording brain activities, our simulations show that prosthetic devices can be adapted successfully during everyday usage, requiring no special training procedures. Furthermore, the adaptation is shown to be stable against large changes in neural encoding and/or in the recording itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen RA, Burdick JW, Mussallam S, Pesaran B, Cham JG (2004a) Cognitive neural prosthetics. Trends Cogn Sci 8(11):486–493

    Article  CAS  Google Scholar 

  • Andersen RA, Mussallam S, Pesaran B (2004b) Selecting the signals for a brain-machine interface. Curr Opin Neurobiol 14:720–726

    Article  CAS  Google Scholar 

  • Batista AP, Buneo CA, Snyder LH, Andersen RA (1999) Reach plans in eye-centered coordinates. Science 285:257–260

    Article  PubMed  CAS  Google Scholar 

  • Black MJ, Bienenstock E, Donoghue JP, Serruya M, Wu W, Gao Y (2003) Connecting brains with machines: the neural control of 2D cursor movement. In: 1st international IEEE/EMBS conference on neural engineering pp 580–583

  • Blankertz B, Curio G, Mueller K-R (2002) Classifying single trial EEG: towards brain computer interfacing. Adv Neural Inf Proc Syst 14:157–164

    Google Scholar 

  • Boussaoud D, Jouffrais C, Bremmer F (1998) Eye position effects on the neuronal activity of dorsal premotor cortex in the macaque monkey. J Neurophysiol 80:1132–1150

    PubMed  CAS  Google Scholar 

  • Diedrichsen J, Hashambhoy YL, Rane T, Shadmehr R (2005) Neural correlates of reach errors. J Neurosci 25(43):9919–9931

    Article  PubMed  CAS  Google Scholar 

  • Fiorillo CD, Tobler PN, Schultz W (2003) Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299:1898–1902

    Article  PubMed  CAS  Google Scholar 

  • Fu QG, Flament D, Coltz JD, Ebner TJ (1997) Relationship of cerebellar purkinje cell simple spike discharge to movement kinematics in the monkey. J Neurophysiol 78:478–491

    PubMed  CAS  Google Scholar 

  • Fujii N, Mushiake H, Tanji J (2000) Rostrocaudal distinction of the dorsal premotor area based on oculomotor involvement. J Neurophysiol 83:1764–1769

    PubMed  CAS  Google Scholar 

  • Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E (1993) A neural system for error detection and compensation. Psychol Sci 4:385–390

    Article  Google Scholar 

  • Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movement and cell discharge in primate motor cortex. J Neurosci 2(11):1527–1537

    PubMed  CAS  Google Scholar 

  • Helms Tillery SI, Taylor DM, Schwartz AB (2003) Training in cortical control of neuroprosthetic devices improves signal extraction from small neuronal ensembles. Rev Neurosci 14(1-2):107–119

    PubMed  CAS  Google Scholar 

  • Hinterberger T, Schmidt S, Neumann N, Mellinger J, Blankertz B, Curio G, Birbaumer N (2004) Brain-computer communication with slow cortical potentials: Methodology and critical aspects. IEEE Trans Biomed Eng 51(6):1011–1018

    Article  PubMed  Google Scholar 

  • Holroyd CB, Coles MGH (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 109:679–709

    Article  PubMed  Google Scholar 

  • Ito S, Stuphorn V, Brown JW, Schall JD (2003) Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science 302:120–122

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Lauwereyns J, Koizumi M, Sakagami M (2002) Influence of reward expectation on visuospatial processing in macaque lateral prefrontal cortex. J Neurophysiol 87:1488–1498

    PubMed  Google Scholar 

  • Lebedev MA, Carmena JM, O’Doherty JE, Zacksenhouse M, Henriquez CS, Principe JC, Nicolelis MAL (2005) Cortical ensemble adaptation to represent velocity of an artifical actuator controlled by a brain-machine interface. J Neurosci 25(19):4681–4693

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Suzuki W, Tanaka K (2003) Neuronal correlates of goal-based motor selection in the preforntal cortex. Science 301:229–232

    Article  PubMed  CAS  Google Scholar 

  • Mehring C, Rickert J, Vaadia E, Cardoso de Oliveira S, Aertsen A, Rotter S (2003) Inference of hand movements from local field potentials in monkey motor cortex. Nat Neurosci 6:1253–1254

    Article  PubMed  CAS  Google Scholar 

  • Moran DW, Schwartz AB (1999a). Motor cortical representation of speed and direction during reaching. J Neurophysiol 82:2676–2692

    CAS  Google Scholar 

  • Moran DW, Schwartz AB (1999b) Motor cortical activity during drawing movements: population representation during spiral tracing. J Neurophysiol 82:2693–2704

    CAS  Google Scholar 

  • Murata N, Kawanabe M, Ziehe A, Mueller K-R, Amari S (2002) On-line learning in changing environments with applications in supervised and unsupervised learning. Neural Networks 15:743–760

    Article  PubMed  Google Scholar 

  • Musallam S, Corneil BD, Greger B, Scherberger H, Andersen RA (2004) Cognitive control signals for neural prosthetics. Science 305:258–262

    Article  PubMed  CAS  Google Scholar 

  • Mushiake H, Tanatsugu Y, Tanji J (1997) Neuronal activity in the ventral part of premotor cortex during target-reach movement is modulated by direction of gaze. J Neurophysiol 78:567–571

    PubMed  CAS  Google Scholar 

  • Nakahara H, Itoh H, Kawagoe R, Takikawa Y, Hikoska O (2004) Dopamine neurons can represent context-dependent prediction error. Neuron 41:269–280

    Article  PubMed  CAS  Google Scholar 

  • Paninski L, Fellows MR, Hatsopoulos NG, Donoghue JP (2004) Spatiotemporal tuning of motor cortical neurons for hand position and velocity. J Neurophysiol 91:515–532

    Article  PubMed  Google Scholar 

  • Platt ML, Glimcher PW (1999) Neural correlates of decision variables in parietal cortex. Nature 400:233–238

    Article  PubMed  CAS  Google Scholar 

  • Ridderinkhof KR, van den Wildenberg WPM, Segalowitz SJ, Carter CS (2004a) Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn 56:129–140

    Article  PubMed  Google Scholar 

  • Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S (2004b) The role of the medial frontal cortex in cognitive. Science 306:443–447

    Article  CAS  Google Scholar 

  • Roesch MR, Olson CR (2003) Impact of expected reward on neuronal activity in prefrontal cortex, frontal and supplementary eye fields and premotor cortex. J Neurophysiol 90:1766–1789

    Article  PubMed  Google Scholar 

  • Salinas E, Abbott LF (1994) Vector reconstruction from firing rates. J Comput Neurosci 1:89–107

    Article  PubMed  CAS  Google Scholar 

  • Satoh T, Nakai S, Kimura M (2003) Correlated coding of motivation and outcome of decision by dopamine neurons. J Neurosci 23(30):9913–9923

    PubMed  CAS  Google Scholar 

  • Schalk G, Wolpaw JR, McFarland DJ, Pfurtscheller G (2000) Eeg-based communication: presence of an error potential. Clin Neurophysiol 111(12):2138–2144

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    PubMed  CAS  Google Scholar 

  • Schultz W (2004) Neural coding of basic reward terms of animal learning theory, game theory, microeconomics and behavioural ecology. Curr Opin Neurobiol 14:139–147

    Article  PubMed  CAS  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Schwartz AB (2004) Cortical neural prosthetics. Annu Rev Neurosci 27:487–507

    Article  PubMed  CAS  Google Scholar 

  • Schwartz AB, Taylor DM, Helms Tillery SI (2001) Extraction algorithms for cortical control of arm prosthetics. Curr Opin Neurobiol 11:701–707

    Article  PubMed  CAS  Google Scholar 

  • Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18(10):3870–3896

    PubMed  CAS  Google Scholar 

  • Shidara M, Aigner TG, Richmond BJ (1998) Neuronal signals in the monkey ventral striatum related to progress through a predictable series of trials. J Neurosci 18(7):2613–2625

    PubMed  CAS  Google Scholar 

  • Shima K, Tanji J (1998) Role for cingulate motor area cells in voluntary movement selection based on reward. Science 282:1335–1338

    Article  PubMed  CAS  Google Scholar 

  • Stuphorn V, Bauswein E, Hoffmann K-P (2000) Neurons in the primate superior colliculus coding for arm movements in gaze-related coordinates. J Neurophysiol 83:1283–1299

    PubMed  CAS  Google Scholar 

  • Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, New York

    Google Scholar 

  • Taylor DM, Helms Tillery SI, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296:1829–1832

    Article  PubMed  CAS  Google Scholar 

  • Tobler PN, Fiorillo CD, Schultz W (2005) Adaptive coding of reward value by dopamine neurons. Science 307:1642–1645

    Article  PubMed  CAS  Google Scholar 

  • Tremblay L, Schultz W (1999) Relative reward preference in primate orbitofrontal cortex. Nature 398:704–708

    Article  PubMed  CAS  Google Scholar 

  • Tremblay L, Schultz W (2000) Reward-related neuronal activity during Go-Nogo task performance in primate orbitofrontal cortex. J Neurophysiol 83:1864–1876

    PubMed  CAS  Google Scholar 

  • van Schie HT, Mars RB, Coles MG, Bekkering H (2004) Modulation of activity in medial frontal and motor cortices during error observation. Nat Neurosci 7:549–554

    Article  PubMed  CAS  Google Scholar 

  • van Veen V, Holroyd CB, Cohen JD, Stenger VA, Carter SC (2004) Errors without conflict: implications for performance monitoring theories of anterior cingulate cortex. Brain Cogn 56:267–276

    Article  PubMed  Google Scholar 

  • Watanabe M, Hikosaka K, Sakagami M, Shirakawa S-I (2002) Coding and monitoring of motivational context in the primate prefrontal cortex. J Neurosci 22(6):2391–2400

    PubMed  CAS  Google Scholar 

  • Wolpaw J, McFarland DJ (2004) Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. PNAS 101(51):17849–17854

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Seung HS (2004) Learning in neural networks by reinforcement of irregular spiking. Phys Rev E 69:041909

    Article  CAS  Google Scholar 

  • Yeung N, Botvinick MN, Cohen JD (2004) The neural basis of error detection: conflict monitoring and the error-related negativity. Psychol Rev 111(4):931–959

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Rotermund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotermund, D., Ernst, U.A. & Pawelzik, K.R. Towards On-line Adaptation of Neuro-prostheses with Neuronal Evaluation Signals. Biol Cybern 95, 243–257 (2006). https://doi.org/10.1007/s00422-006-0083-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0083-7

Keywords

Navigation