Skip to main content

Advertisement

Log in

DWT–CEM: an algorithm for scale-temporal clustering in fMRI

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The number of studies using functional magnetic resonance imaging (fMRI) has grown very rapidly since the first description of the technique in the early 1990s. Most published studies have utilized data analysis methods based on voxel-wise application of general linear models (GLM). On the other hand, temporal clustering analysis (TCA) focuses on the identification of relationships between cortical areas by measuring temporal common properties. In its most general form, TCA is sensitive to the low signal-to-noise ratio of BOLD and is dependent on subjective choices of filtering parameters. In this paper, we introduce a method for wavelet-based clustering of time-series data and show that it may be useful in data sets with low signal-to-noise ratios, allowing the automatic selection of the optimum number of clusters. We also provide examples of the technique applied to simulated and real fMRI datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aston JA, Gunn RN, Hinz R, Turkheimer FE (2005) Wavelet variance components in image space for spatiotemporal neuroimaging data. Neuroimage 25(1):159–168

    Article  PubMed  Google Scholar 

  • Baumgartner R, Ryner L, Richter W, Summers R, Jarmsaz M, Somorjai R (2000) Comparision of two exploratory data analysis methods for fMRI: fuzzy clustering vs. principal component analysis. Magn Reson Imaging 18:89–94

    Article  PubMed  CAS  Google Scholar 

  • Biswal B, Yetking FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    Article  PubMed  CAS  Google Scholar 

  • Biswal B, Ulmer JL (1999) Blind source separation of multiple signal sources of fMRI data sets using independent component analysis. J Comput Assist Tomogr 23(2):265–271

    Article  PubMed  CAS  Google Scholar 

  • Brammer MJ, Bullmore ET, Simmons A, Williams SC, Grasby PM, Howard RJ, Woodruff PW, Rabe-Hesketh S (1997) Generic brain activation mapping in functional magnetic resonance imaging: a nonparametric approach. Magn Reson Imaging 15(7): 763–770

    Article  PubMed  CAS  Google Scholar 

  • Bullmore E, Long C, Suckling J, Fadili J, Calvert G, Zelaya F, Carpenter TA, Brammer M (2001) Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains. Hum Brain Mapp 12(2):61–78

    Article  PubMed  CAS  Google Scholar 

  • Bullmore E, Fadili J, Breakspear M, Salvador R, Suckling J, Brammer M (2003) Wavelets and statistical analysis of functional magnetic resonance images of the human brain. Stat Methods Med Res 12(5):375–399

    Article  PubMed  Google Scholar 

  • Bullmore E, Fadili J, Maxim V, Sendur L, Whitcher B, Suckling J, Brammer M, Breakspear M (2004) Wavelets and functional magnetic resonance imaging of the human brain. Neuroimage 23(Suppl 1):S234–S249

    Article  PubMed  Google Scholar 

  • Celeux G, Govaert G (1992) A classication EM algorithm for clustering and two stochastic versions. Comput Statist Data Anal 14(3): 315–332

    Article  Google Scholar 

  • Celeux G, Govaert G (1995) Gaussian parsimonious clustering models. Pattern Recognition 28:781–793

    Article  Google Scholar 

  • Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103(37): 13848–13853

    Article  PubMed  CAS  Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets. SIAM, Philadelphia PA

    Google Scholar 

  • De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29(4): 1359–1367

    Article  PubMed  CAS  Google Scholar 

  • Dimitriadou E, Barth M, Windischberger C, Hornik K, Moser E (2004) A quantitative comparison of functional MRI cluster analysis. Artif Intell Med 31(1):57–71

    Article  PubMed  Google Scholar 

  • Fadili MJ, Bullmore ET (2003) Wavelet-generalized least squares: a new BLU estimator of linear regression models with 1/f errors. Neuroimage 15(1):217–232

    Article  Google Scholar 

  • Fadili MJ, Ruan S, Bloyet D, Mazoyer B (2001) On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series. Med Image Anal 5(1):55–67

    Article  PubMed  CAS  Google Scholar 

  • Gao JH, Yee SH (2003) Iterative temporal clustering analysis for the detection of multiple response peaks in fMRI. Magn Reson Imaging 21(1):51–53

    Article  PubMed  Google Scholar 

  • Hannan EJ, Quinn BG (1979) The determination of the order of an autoregression. J Roy Statis Soc Ser B 41:190–195

    Google Scholar 

  • Harris KD, Henze DA, Csicsvari J, Hirase H, Buzsaki G (2000) Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J Neurophysiol 84(1):401–414

    PubMed  CAS  Google Scholar 

  • Haughton D (1988) On the choice of model to fit data from an exponential family. Ann Statist 16:342–355

    Google Scholar 

  • Hosking JRM (1981) Fractional differencing. Biometrika 68:165–176

    Article  Google Scholar 

  • Jahanian H, Hossein-Zadeh GA, Soltanian-Zadeh H, Ardekani BA (2004) Controlling the false positive rate in fuzzy clustering using randominzation: application to fMRI activation detection. Magn Reson Imaging 22:631–638

    Article  PubMed  Google Scholar 

  • Jia Z, Xu S (2005) Clustering expressed genes on the basis of their association with a quantitative phenotype. Genet Res 86(3):193–207

    Article  PubMed  CAS  Google Scholar 

  • Kohonen T (1995) Self-organizing maps. Springer, Berlin

    Google Scholar 

  • Long C, Brown EN, Manoach D, Solo V (2004) Spatiotemporal wavelet analysis for functional MRI. Neuroimage 23(2):500–516

    Article  PubMed  Google Scholar 

  • McQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proc Fifth Berkeley Symposium on Math Stat and Prob, vol 1, pp 281–296

  • Mourao-Miranda J, Bokde AL, Born C, Hampel H, Stetter M (2005) Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data. Neuroimage 28(4):980–995

    Article  PubMed  Google Scholar 

  • Ogawa S, Lee TM et al. (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87(24):9868–9872

    Article  PubMed  CAS  Google Scholar 

  • Pan W (2007) Incorporating gene functions as priors in model-based clustering of microarray gene expression data. Bioinformatics (in press)

  • Shimizu Y, Barth M, Windischberger C, Moser E, Thurner S (2004) Wavelet-based multifractal analysis of fMRI time series. Neuroimage 22(3):1195–1202

    Article  PubMed  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Statist 6:461–464

    Google Scholar 

  • Strainer JC, Ulmer JL, Yetkin FZ, Haughton VM, Daniels DL, Millen SJ (1997) Functional MR of the primary auditory cortex: an analysis of pure tone activation and tone discrimination. AJNR Am J Neuroradiol 18(4):601–610

    PubMed  CAS  Google Scholar 

  • Tjaden B (2006) An approach for clustering gene expression data with error information. BMC Bioinformatics 7:17

    Article  PubMed  Google Scholar 

  • Van De Ville D, Blu T, Unser M (2004) Integrated wavelet processing and spatial statistical testing of fMRI data. Neuroimage 23(4):1472–1485

    Article  Google Scholar 

  • Vidakovic B (1999) Statistical modeling by wavelets. Wiley Series in Probability and Statistics. ISBN: 0471293652

  • Yee SH, Gao JH (2002) Improved detection of time windows of brain responses in fMRI using modified temporal clustering analysis. Magn Reson Imaging 20(1):17–26

    Article  PubMed  Google Scholar 

  • Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL (2001) Model-based clustering and data transformations for gene expression data. Bioinformatics 17(10):977–987

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Ricardo Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, J.R., Fujita, A., Amaro, E. et al. DWT–CEM: an algorithm for scale-temporal clustering in fMRI. Biol Cybern 97, 33–45 (2007). https://doi.org/10.1007/s00422-007-0154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0154-4

Keywords

Navigation