Skip to main content
Log in

Resolving the dynamics of EEG generators by multichannel recordings

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The voltage recorded over the cortex (ECoG) or over the scalp (EEG) is generated by currents derived from many sources called “generators”. Different patterns and amplitudes are observed in aroused, sleepy, epileptic or other brain states. Differences in amplitude are generally attributed to differences in synchrony among generators. The degree of EEG synchrony is measured by the correlation between electrodes placed over different cortical regions. We present a new way to quantitatively assess the degree of synchronization of these generators via multichannel recordings. We illustrate how situations where there are several groups of generators with different inter-group and intra-group synchronies can be analyzed. Finally, we present a way to identify the organization of groups exhibiting topographic organization. Although the model presented here is highly simplified, several methods are based on averaging activity over increasingly larger areas. These types of measurements may be applied as well to EEG and ECoG recordings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abeles M (1982) Local cortical circuits—an electrophysiological study. Springer, Heidelberg

    Google Scholar 

  2. Adey WR, Elul R (1965) Non linear relationship of spikes and waves in cortical neurons. Physiologist 8: 95

    Google Scholar 

  3. Brown P (2003) Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov Disord 18: 357–363

    Article  PubMed  Google Scholar 

  4. Bullock TH, McClune MC (1989) Lateral coherence of the electroencephalogram: a new measure of brain synchrony. Electroenceph Clin Neurophysiol 73: 479–498

    Article  PubMed  CAS  Google Scholar 

  5. Calvet J, Calvet MC, Scherrer J (1964) Etude stratigraphique de lactivite EEG spontanee. Electroenceph Clin Neurophysiol 17: 109–125

    Article  PubMed  CAS  Google Scholar 

  6. Cooper R, Winter AL, Croe HJ, Walter WG (1965) Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man. Electroenceph Clin Neurophysiol 18: 217–228

    Article  PubMed  CAS  Google Scholar 

  7. Creutzfeldt OD, Watsnabe S, Lux HD (1966) Relations between EEG phenomena and potentials of single cortical cells: spontaneous and convulsoid activity. Electroenceph Clin Neurophysiol 20: 19–37

    Article  PubMed  CAS  Google Scholar 

  8. Creutzfeldt O (1974) Electrical activity from the neuron to the EEG and EMG. In: Creutzfeldt O (eds) Handbook of electroencephalography and clinical neurophysiology, vol 2C. Elsevier, Amsterdam, pp 5–54

    Google Scholar 

  9. Ebersole JS (1997) Defining epileptogenic foci: past, present, future. J Clin Neurophysiol 14: 470–483

    Article  PubMed  CAS  Google Scholar 

  10. Elul R (1972) The genesis of the EEG. Int Rev Neurobiol 15: 228–272

    Google Scholar 

  11. Elul R, Adey WR (1966) Instability of firing threshold and “remote” activation in cortical neurones. Nature 212: 1424–1425

    Article  Google Scholar 

  12. Evarts EV (1964) Temporal patterns of discharge of pyramidal tract neurons during sleep and waking in the monkey. J Neurophysiol 27: 152–171

    PubMed  CAS  Google Scholar 

  13. Grinvald A, Shoham D, Shmuel A, Glaser DE, Vanzetta I, Shtoyerman E, Slovin H, Wijnbergen C, Hildesheim R, Sterkin A, Arieli A (1999) In-vivo optical imaging of cortical architecture and dynamics. In: A. Windhorst U, Johansson H (eds) Modern techniques in neuroscience research. Springer, Heidelberg, pp 893–969

    Google Scholar 

  14. Gross J et al (2004) Modulation of long range neural synchrony reflects temporal limitations of visual attention in humans. Proc Natl Acad Sci USA 101: 13050–13055

    Article  PubMed  CAS  Google Scholar 

  15. Hubel DH, Wiesel T (1977) Functional architecture of macaque monkey cortex. Proc R Soc Lond B 198: 1–59

    Article  PubMed  CAS  Google Scholar 

  16. Hutchison WD et al (2004) Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. J Neurosci 24: 9240–9243

    Article  PubMed  CAS  Google Scholar 

  17. Gold C, Henze DA, Koch C, Buzsáki G (2006) On the origin of the extracellular action potential waveform. J Neurophysiol 95: 3113–3128

    Article  PubMed  CAS  Google Scholar 

  18. Jeong J (2004) EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol 115: 1490–1505

    Article  PubMed  Google Scholar 

  19. Kellaway P (1979) An orderly approach to visual analysis: the parameters of the normal EEG in adults and children. In: Klass DW, Daly DD (eds) Current practice of clinical electroencephalography. Raven, New York, pp 69–147

    Google Scholar 

  20. Lopesda Silva FH, Vos JE, Mooibroek J, van Rotterdam A (1980) Relative contribution of intacortical and thalamo-cortical processes in the generation of alpha rythms, revealed by partial coherence analysis. Electroenceph Clin Neurophysiol 50: 449–456

    Article  CAS  Google Scholar 

  21. Lopesda Silva FH (1991) Neural mechanisms underlying brain waves: from membranes to networks. Electroenceph Clin Neurophysiol 79: 81–93

    Article  CAS  Google Scholar 

  22. Mountcastle VB, Berman AL, Davies PW (1955) Topographic organization and modality representation in first somatic area of cat’s cerebral cortex by method of single unit analysis. Am J Physiol 183: 646

    Google Scholar 

  23. Mountcastle VB (1979) An organizing principle for cerebral function: the unit module and the distributed system. In: Schmitt FO, Worden FG (eds) The neuroscience 4th study program. MIT, Cambridge

    Google Scholar 

  24. Nunez PL (1989) Generation of human EEG by combination of long and short range neocortical interactions. Brain Topogr 1: 199–215

    Article  PubMed  CAS  Google Scholar 

  25. Nunez PL (2006) Electric fields of brain. In: The neurophysics of EEG, 2nd edn. pp 353–431

  26. Petsche H, Pockberger H, Rappelsberger P (1984) On the search for sources of the electroencephalogram. Neuroscience 11: 1–27

    Article  PubMed  CAS  Google Scholar 

  27. Pfurtscheller G, Lopesda Silva FH (1999) Event related EEG/MEG synchronization and desynchronization: basic principles. Electroenceph Clin Neurophysiol 110: 1842–1857

    CAS  Google Scholar 

  28. Scherrer J, Calvet J (1972) Normal and epileptic synchronization at cortical level in animal. In: Petsche H, Brazier M (eds) Mechanism of synchronization in epileptic seizures. Springer, Wien

    Google Scholar 

  29. Timofeev I, Steriade M (2004) Neocortical seizures: initiation, development and cessation. Neuroscience 123: 299–336

    Article  PubMed  CAS  Google Scholar 

  30. Traub RD (2003) Fast oscillations and epilepsy. Epilepsy Curr 3: 77–79

    Article  PubMed  Google Scholar 

  31. van der Stelt O, Belger A, Lieberman JA (2004) Macroscopic fast neuronal oscillation and synchrony in schizophrenia. Proc Natl Acad Sci USA 101: 17567–17568

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilach Avitan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avitan, L., Teicher, M. & Abeles, M. Resolving the dynamics of EEG generators by multichannel recordings. Biol Cybern 98, 49–59 (2008). https://doi.org/10.1007/s00422-007-0192-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0192-y

Keywords

Navigation