Skip to main content
Log in

An autocorrelation model of bat sonar

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Their sonar system allows echolocating bats to navigate with high skill through a complex, three- dimensional environment at high speed and low light. The auditory analysis of the echoes of their ultrasonic sounds requires a detailed comparison of the emission and echoes. Here an auditory model of bat sonar is introduced and evaluated against a set of psychophysical phantom-target, echo-acoustic experiments. The model consists of a relatively detailed simulation of auditory peripheral processing in the bat, Phyllostomus discolor, followed by a functional module consisting of a strobed, normalised, autocorrelation in each frequency channel. The model output is accumulated in a sonar image buffer. The model evaluation is based on the comparison of the image-buffer contents generated in individually simulated psychophysical trials. The model provides reasonably good predictions for both temporal and spectral behavioural sonar processing in terms of sonar delay-, roughness, and phase sensitivity and in terms of sensitivity to the temporal separations in two-front targets and the classification of spectrally divergent phantom targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson DJ, Rose JE, Hind JE and Brugge JF (1971). Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: frequency and intensity effects. J Acoust Soc Am 49(Suppl2): 1131

    Article  PubMed  Google Scholar 

  • Berkowitz A and Suga N (1989). Neural mechanisms of ranging are different in two species of bats. Hear Res 41: 255–64

    Article  CAS  PubMed  Google Scholar 

  • Boonman A and Ostwald J (2007). A modeling approach to explain pulse design in bats. Biol Cybern 97: 159–72

    Article  PubMed  Google Scholar 

  • Brand A, Behrend O, Marquardt T, McAlpine D and Grothe B (2002). Precise inhibition is essential for microsecond interaural time difference coding. Nature 417: 543–47

    Article  CAS  PubMed  Google Scholar 

  • Dau T, Kollmeier B and Kohlrausch A (1997). Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers. J Acoust Soc Am 102: 2892–905

    Article  CAS  PubMed  Google Scholar 

  • Dear SP, Fritz J, Haresign T, Ferragamo M and Simmons JA (1993). Tonotopic and functional organization in the auditory cortex of the big brown bat, Eptesicus fuscus. J Neurophysiol 70: 1988–009

    CAS  PubMed  Google Scholar 

  • Denzinger A and Schnitzler HU (1994). Echo SPL influences the ranging performance of the big brown bat, Eptesicus fuscus. J Comp Physiol A 175: 563–71

    Article  CAS  PubMed  Google Scholar 

  • Denzinger A and Schnitzler HU (1998). Echo SPL, training experience and experimental procedure influence the ranging performance in the big brown bat, Eptesicus fuscus. J Comp Physiol A 183: 213–24

    Article  CAS  PubMed  Google Scholar 

  • Firzlaff U and Schuller G (2003). Spectral directionality of the external ear of the lesser spear-nosed bat, Phyllostomus discolor. Hear Res 181: 27–9

    Article  PubMed  Google Scholar 

  • Firzlaff U, Schörnich S, Hoffmann S, Schuller G and Wiegrebe L (2006). A neural correlate of stochastic echo imaging. J Neurosci 26: 785–91

    Article  CAS  PubMed  Google Scholar 

  • Firzlaff U, Schuchmann M, Grunwald JE, Schuller G and Wiegrebe L (2007). Object-oriented Echo Perception and Cortical Representation in Echolocating Bats. PLoS Biol 5: e100

    Article  PubMed  Google Scholar 

  • Ghose K and Moss CF (2006). Steering by hearing: a bat’s acoustic gaze is linked to its flight motor output by a delayed, adaptive linear law. J Neurosci 26: 1704–710

    Article  CAS  PubMed  Google Scholar 

  • Ghose K, Horiuchi TK, Krishnaprasad PS and Moss CF (2006). Echolocating bats use a nearly time-optimal strategy to intercept prey. PLoS Biol 4: e108

    Article  PubMed  Google Scholar 

  • Grothe B, Vater M, Casseday JH and Covey E (1992). Monaural interaction of excitation and inhibition in the medial superior olive of the mustached bat: an adaptation for biosonar. Proc Natl Acad Sci U S A 89: 5108–112

    Article  CAS  PubMed  Google Scholar 

  • Grothe B, Park TJ and Schuller G (1997). Medial superior olive in the free-tailed bat: response to pure tones and amplitude-modulated tones. J Neurophysiol 77: 1553–565

    CAS  PubMed  Google Scholar 

  • Grothe B, Covey E and Casseday JH (2001). Medial superior olive of the big brown bat: neuronal responses to pure tones, amplitude modulations, and pulse trains. J Neurophysiol 86: 2219–230

    CAS  PubMed  Google Scholar 

  • Grunwald JE, Schörnich S and Wiegrebe L (2004). Classification of natural textures in echolocation. Proc Natl Acad Sci USA 101: 5670–674

    Article  CAS  PubMed  Google Scholar 

  • Jensen ME, Moss CF and Surlykke A (2005). Echolocating bats can use acoustic landmarks for spatial orientation. J Exp Biol 208: 4399–410

    Article  PubMed  Google Scholar 

  • Matsuo I, Kunugiyama K and Yano M (2004). An echolocation model for range discrimination of multiple closely spaced objects: transformation of spectrogram into the reflected intensity distribution. J Acoust Soc Am 115: 920–28

    Article  PubMed  Google Scholar 

  • Menne D, Kaipf I, Wagner I, Ostwald J and Schnitzler HU (1989). Range estimation by echolocation in the bat Eptesicus fuscus: trading of phase versus time cues. J Acoust Soc Am 85: 2642–650

    Article  CAS  PubMed  Google Scholar 

  • Moss C and Surlykke A (2001). Auditory scene analysis by echolocation in bats. J Acoust Soc Am 110: 2207–226

    Article  CAS  PubMed  Google Scholar 

  • Moss CF, Bohn K, Gilkenson H and Surlykke A (2006). Active listening for spatial orientation in a complex auditory scene. PLoS Biol 4: e79

    Article  PubMed  Google Scholar 

  • O’Neill WE (1995). The bat auditory cortex. In: Popper, AN and Fay, RR (eds) Haering by bats, pp 416–80. Springer, New York,

    Google Scholar 

  • O’Neill WE and Suga N (1979). Target range-sensitive neurons in the auditory cortex of the mustache bat. Science 203: 69–3

    Article  PubMed  Google Scholar 

  • Oxenham AJ and Moore BC (1994). Modeling the additivity of nonsimultaneous masking. Hear Res 80: 105–18

    Article  CAS  PubMed  Google Scholar 

  • Palmer AR and Russell IJ (1986). Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hear Res 24: 1–5

    Article  CAS  PubMed  Google Scholar 

  • Patterson RD (1994). The sound of a sinusoid: spectral models. J Acoust Soc Am 96: 1409–418

    Article  Google Scholar 

  • Patterson RD, Allerhand MH and Giguere C (1995). Time-domain modeling of peripheral auditory processing: a modular architecture and a software platform. J Acoust Soc Am 98: 1890–894

    Article  CAS  PubMed  Google Scholar 

  • Peremans H and Hallam J (1998). The spectrogram correlation and transformation receiver, revisited. J Acoust Soc Am 104: 1101–110

    Article  CAS  PubMed  Google Scholar 

  • Portfors CV and Wenstrup JJ (1999). Delay-tuned neurons in the inferior colliculus of the mustached bat: implications for analyses of target distance. J Neurophysiol 82: 1326–338

    CAS  PubMed  Google Scholar 

  • Portfors CV and Wenstrup JJ (2001). Topographical distribution of delay-tuned responses in the mustached bat inferior colliculus. Hear Res 151: 95–05

    Article  CAS  PubMed  Google Scholar 

  • Saillant PA, Simmons JA, Dear SP and McMullen TA (1993). A computational model of echo processing and acoustic imaging in frequency-modulated echolocating bats: the spectrogram correlation and transformation receiver. J Acoust Soc Am 94: 2691–712

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S (1988). Evidence for a spectral basis of texture perception in bat sonar. Nature 331: 617–19

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S (1992). Perception of structured phantom targets in the echolocating bat, Megaderma lyra. J Acoust Soc Am 91: 2203–223

    Article  CAS  PubMed  Google Scholar 

  • Schörnich S and Wiegrebe L (2008). Phase sensitivity in bat sonar revisited. J Comp Physiol A Sens Neural Behav Physiol 194: 61–7

    Article  Google Scholar 

  • Schuchmann M, Huebner M and Wiegrebe L (2006). The absence of spatial echo suppression in the echolocating bats Megaderma lyra and Phyllostomus discolor. J Exp Biol 209: 152–57

    Article  PubMed  Google Scholar 

  • Simmons JA (1979). Perception of echo phase information in bat sonar. Science 204: 1336–338

    Article  CAS  PubMed  Google Scholar 

  • Simmons JA, Ferragamo M, Moss CF, Stevenson SB and Alters RA (1990). Discrimination of jittered sonar echoes by the echolocating bat, Eptesicus fuscus: The shape of target images in echolocation. J Compar Physiol A 167: 589–16

    CAS  Google Scholar 

  • Simmons JA, Ferragamo MJ and Sanderson MI (2003). Echo delay versus spectral cues for temporal hyperacuity in the big brown bat, Eptesicus fuscus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189: 693–02

    Article  CAS  PubMed  Google Scholar 

  • Sumner CJ, Lopez-Poveda EA, O’Mard LP and Meddis R (2002). A revised model of the inner-hair cell and auditory-nerve complex. J Acoust Soc Am 111: 2178–188

    Article  PubMed  Google Scholar 

  • Sumner CJ, Lopez-Poveda EA, O’Mard LP and Meddis R (2003). Adaptation in a revised inner-hair cell model. J Acoust Soc Am 113: 893–01

    Article  PubMed  Google Scholar 

  • Weißenbacher P and Wiegrebe L (2003). Classification of virtual objects in the echolocating bat, Megaderma lyra. Behav Neurosci 117: 833–39

    Article  PubMed  Google Scholar 

  • Winter IM and Palmer AR (1990). Responses of single units in the anteroventral cochlear nucleus of the guinea pig. Hear Res 44: 161–78

    Article  PubMed  Google Scholar 

  • Wittekindt A, Drexl M and Koessl M (2005). Cochlear sensitivity in the lesser spear-nosed bat, Phyllostomus discolor. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191: 31–6

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Wiegrebe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiegrebe, L. An autocorrelation model of bat sonar. Biol Cybern 98, 587–595 (2008). https://doi.org/10.1007/s00422-008-0216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0216-2

Keywords

Navigation