Skip to main content
Log in

Complex evolution of spike patterns during burst propagation through feed-forward networks

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Stable signal transmission is crucial for information processing by the brain. Synfire-chains, defined as feed-forward networks of spiking neurons, are a well-studied class of circuit structure that can propagate a packet of single spikes while maintaining a fixed packet profile. Here, we studied the stable propagation of spike bursts, rather than single spike activities, in a feed-forward network of a general class of excitable bursting neurons. In contrast to single spikes, bursts can propagate stably without converging to any fixed profiles. Spike timings of bursts continue to change cyclically or irregularly during propagation depending on intrinsic properties of the neurons and the coupling strength of the network. To find the conditions under which bursts lose fixed profiles, we propose an analysis based on timing shifts of burst spikes similar to the phase response analysis of limit-cycle oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles M (1991). Corticonics: neuronal circuits of the cerebral cortex. Cambridge University Press, Cambridge

    Google Scholar 

  • Beggs JM and Plenz D (2004). Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J Neurosci 24: 5216–5229

    Article  PubMed  CAS  Google Scholar 

  • Belykh I, de Lange E and Hasler M (2005). Synchronization of bursting neurons: what matters in the network topology. Phys Rev Lett 94: 188101

    Article  PubMed  CAS  Google Scholar 

  • Butera RJ, Rinzel J and Smith JC (1999). Model of respiratory rhythm generation in the pre-botzinger complex. I. Bursting pacemaker neurons. J Neurophysiol 82: 382–397

    PubMed  Google Scholar 

  • Cateau H and Fukai T (2001). Fokker–Planck approach to the pulse packet propagation in synfire chain. Neural Netw 14: 675–685

    Article  PubMed  CAS  Google Scholar 

  • Chaté H and Manneville P (1987). Transition to turbulence via spatio-temporal intermittency. Phys Rev Lett 58: 112–115

    Article  PubMed  Google Scholar 

  • Chay TR and Keizer J (1983). Minimal model for membrane oscillations in the pancreatic β-cell. Biophys J 42: 181–190

    PubMed  CAS  Google Scholar 

  • Destexhe A and Contreras D (2006). Neuronal computations with stochastic network states. Science 314: 85–90

    Article  PubMed  CAS  Google Scholar 

  • Diesmann M, Gewaltig M and Aertsen A (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature 402: 529–533

    Article  PubMed  CAS  Google Scholar 

  • Elezgaray J and Arneodo A (1992). Crisis-induced intermittent bursting in reaction-diffusion chemical systems. Phys Rev Lett 68: 714–717

    Article  PubMed  CAS  Google Scholar 

  • Fellous JM, Tiesinga PH, Thomas PJ and Sejnowski TJ (2004). Discovering spike patterns in neuronal responses. J Neurosci 24: 2989–3001

    Article  PubMed  CAS  Google Scholar 

  • Gammaitoni L, Hänggi P, Jung P and Marchesoni F (1998). Stochastic resonance. Rev Mod Phys 70: 223–287

    Article  CAS  Google Scholar 

  • Galan RF, Ermentrout GB and Urban NN (2005). Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling. Phys Rev Lett 94: 158101

    Article  PubMed  CAS  Google Scholar 

  • Guckenheimer J and Holmes P (1983). Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer, New York

    Google Scholar 

  • Hahnloser RH, Kozhevvnikov AA and Fee MS (2002). An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419: 65–70

    Article  PubMed  CAS  Google Scholar 

  • Han SK, Kurrer C and Kuramoto Y (1995). Dephasing and bursting in coupled neural oscillators. Phys Rev Lett 75: 3190–3193

    Article  PubMed  CAS  Google Scholar 

  • Hansel D, Mato G and Meunier C (1995). Synchrony in excitatory neural networks. Neural Comput 7: 307–337

    Article  PubMed  CAS  Google Scholar 

  • Hindmarsh JL and Rose RM (1984). A model of neuronal bursting using three coupled first order differential equations. Proc R Sci Lond B 221: 87–102

    Article  CAS  Google Scholar 

  • Ivanchenko MV, Osipov GV, Shalfeev VD and Kurths J (2004). Phase synchronization in ensembles of bursting oscillators. Phys Rev Lett 93: 134101

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich EM (2000). Neural excitability, spiking and bursting. Int J Bifurcation Chaos 10: 1171–1266

    Article  Google Scholar 

  • Izhikevich EM (2006). Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT, Cambridge

    Google Scholar 

  • Jin DZ, Ramazanoglu FM and Seung HS (2007). Intrinsic bursting enhances the robustness of a neural network model of sequence generation by avian brain area HVC. J Comput Neurosci 23(3): 283–299

    Article  PubMed  Google Scholar 

  • Kuramoto Y (1984). Chemical oscillations, waves and turbulence. Springer, Berlin

    Google Scholar 

  • MacLean JN, Watson BO, Aaron GB and Yuste R (2005). Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48: 811–823

    Article  PubMed  CAS  Google Scholar 

  • Medvedev GS (2006). Transition to bursting via deterministic chaos. Phys Rev Lett 97: 048102

    Article  PubMed  CAS  Google Scholar 

  • Mehring C, Hehl U, Kubo M and Diesmann M (2003). Aertsen A Activity dynamics and propagation of synchronous spiking in locally connected random networks. Biol Cybern 88: 395–408

    Article  PubMed  Google Scholar 

  • Meucci R, Di Garbo A, Allaria E and Arecchi FT (2002). Autonomous bursting in a homoclinic system. Phys Rev Lett 88: 144101

    Article  PubMed  CAS  Google Scholar 

  • Netoff TI, Banks MI, Dorval AD, Acker CD, Haas JS, Kopell N and White JA (2005). J Neurophysiol 93: 1197–1208

    Article  PubMed  Google Scholar 

  • Nowotny T and Rabinovich M (2007). Dynamical origin of independent spiking and bursting activity in neural microcircuits. Phys Rev Lett 98: 128106

    Article  PubMed  CAS  Google Scholar 

  • Osipov GV, Ivanchenko MV, Kurths J and Hu B (2005). Synchronized chaotic intermittent and spiking behavior in coupled map chains. Phys Rev E 71: 056209

    Article  CAS  Google Scholar 

  • Prut Y, Vaadia E, Bergman H, Haalman I, Slovin H and Abeles M (1998). Spatiotemporal structure of cortical activity: properties and behavioral relevance. J Neurophysiol 79: 2857–2874

    PubMed  CAS  Google Scholar 

  • Raghavachari S and Glazier JA (1999). Waves in diffusively coupled bursting cells. Phys Rev Lett 82: 2991–2994

    Article  CAS  Google Scholar 

  • Reyes AD and Fetz EE (1993). Two modes of interspike interval shortening by brief transient depolarizations in cat neocortical neurons. J Neurophysiol 69: 1661–1672

    PubMed  CAS  Google Scholar 

  • Rinzel J and Troy WC (1982). Bursting phenomena in a simplified Oregonator flow system model. J Chem Phys 76(4): 1775–1789

    Article  CAS  Google Scholar 

  • Rinzel J (1987) A formal classification of bursting mechanisms in excitable systems. In: Teramoto E, Yamaguti M (eds) Mathematical topics in population biology, morphogenesis, and neurosciences. Lect Notes Biomath 71:267–281

  • Rulkov NF (2001). Regularization of synchronized chaotic bursts. Phys Rev Lett 86: 183–186

    Article  PubMed  CAS  Google Scholar 

  • Shilnikov A and Cymbalyuk G (2005). Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Phys Rev Lett 94: 048101

    Article  PubMed  CAS  Google Scholar 

  • Takekawa T, Aoyagi T and Fukai T (2007). Synchronous and asynchronous bursting states: role of intrinsic neural dynamics. J Comput Neurosci 23(2): 189–200

    Article  PubMed  Google Scholar 

  • Teramae J and Fukai T (2007a). Local cortical circuit model inferred from power-law distributed neuronal avalanches. J Comput Neurosci 22(3): 301–312

    Article  PubMed  Google Scholar 

  • Teramae J and Fukai T (2007b). Sequential associative memory with nonuniformity of the layer sizes. Phys Rev E 75: 011910

    Article  CAS  Google Scholar 

  • Teramae J and Kuramoto Y (2001). Strong desynchronizing effects of weak noise in globally coupled systems. Phys Rev E 63: 036210

    Article  CAS  Google Scholar 

  • Teramae J and Tanaka D (2004). Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators. Phys Rev Lett 93: 204103

    Article  PubMed  CAS  Google Scholar 

  • Teramae J and Tanaka D (2006). Noise induced phase synchronization of a general class of limit cycle oscillators. Prog Theol Phys Supple 161: 360–363

    Article  Google Scholar 

  • Terman D (1991). Chaotic spikes arising from a model of bursting in excitable membranes. SIAM J Appl Math 51: 1418–1450

    Article  Google Scholar 

  • Tsubo Y, Takada M, Reyes AD and Fukai T (2007a). Layer and frequency dependencies of phase response properties of pyramidal neurons in rat motor cortex. Eur J Neurosci 25: 3429–3441

    Article  PubMed  Google Scholar 

  • Tsubo Y, Teramae J and Fukai T (2007b). Synchronization of excitatory neurons with strongly heterogeneous phase responses. Phys Rev Lett 99: 228101

    Article  PubMed  CAS  Google Scholar 

  • Van Rossum MC, Turrigiano GG, Nelson SB (2002) Fast propagation of firing rates through layered networks of noisy neurons. J Neurosci 22:1956–1966

    PubMed  CAS  Google Scholar 

  • Vries GC and Sherman A (2000). Channel Sharing in Pancreatic β-cells revisited: enhancement of emergent bursting by noise. J Theor Biol 207: 513–530

    Article  PubMed  Google Scholar 

  • Wang XJ (1993). Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle. Physica D 62: 263–274

    Article  Google Scholar 

  • Zhou C and Kurths J (2002). Noise-induced phase synchronization and synchronization transitions in chaotic oscillators. Phys Rev Lett 88: 230602

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-nosuke Teramae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teramae, Jn., Fukai, T. Complex evolution of spike patterns during burst propagation through feed-forward networks. Biol Cybern 99, 105–114 (2008). https://doi.org/10.1007/s00422-008-0246-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0246-9

Keywords

Navigation