Skip to main content
Log in

Unraveling the finding of 1/f β noise in self-paced and synchronized tapping: a unifying mechanistic model

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

1/f β noise has been revealed in both self-paced and synchronized tapping sequences, without being consistently taken into consideration for the modeling of underlying timing mechanisms. In this study we characterize variability, short-range, and long-range correlation properties of asynchronies and inter-tap intervals collected in a synchronization tapping experiment, attesting statistically the presence of 1/f β noise in asynchronies. We verify that the linear phase correction model of synchronization tapping in its original formulation cannot account for the empirical long-range correlation properties. On the basis of previous accounts of 1/f β noise in the literature on self-paced tapping, we propose an extension of the original synchronization model by modeling the timekeeping process as a source of 1/f β fluctuations. Simulations show that this ‘1/f-AR synchronization model’ accounts for the statistical properties of empirical series, including long-range correlations, and provides an unifying mechanistic account of 1/f β noise in self-paced and synchronization tapping. This account opens the original synchronization framework to further investigations of timing mechanisms with regard to the serial correlation properties in performed time intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: An explanation of 1/f noise. Phys Rev Lett 59: 381–384

    Article  PubMed  Google Scholar 

  • Bédard C, Kröger H, Destexhe A (2006) Does 1/f frequency scaling of brain signals reflect self-organized critical states. Phys Rev Lett 97: 118102

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Ding M, Kelso JAS (1997) Long memory processes (1/f α type) in human coordination. Phys Rev Lett 79: 4501–4504

    Article  CAS  Google Scholar 

  • Chen Y, Ding M, Kelso JAS (2001) Origins of timing errors in human sensorimotor coordination. J Mot Behav 33: 3–8

    PubMed  CAS  Google Scholar 

  • Chen Y, Repp BH, Patel AD (2002) Spectral decomposition of variability in synchronization and continuation tapping: Comparison between auditory and visual pacing and feedback conditions. Hum Mov Sci 21: 515–532

    Article  PubMed  Google Scholar 

  • Delignières D, Lemoine L, Torre K (2004) Time intervals production in tapping and oscillatory motion. Hum Mov Sci 23: 87–103

    Article  PubMed  Google Scholar 

  • Delignières D, Ramdani S, Lemoine L, Torre K, Fortes M, Ninot G (2006) Fractal analysis for short time series: A reassessement of classical methods. J Math Psychol 50: 525–544

    Article  Google Scholar 

  • Delignières D, Torre K, Lemoine L (2008) Fractal models for event-based and dynamical timers. Acta Psychol 127: 382–397

    Article  Google Scholar 

  • Ding M, Chen Y, Kelso JAS (2002) Statistical analysis of timing errors. Brain Cogn 48: 98–106

    Article  PubMed  Google Scholar 

  • Eke A, Herman P, Bassingthwaighte JB, Raymond GM, Percival DB, Cannon M, Balla I, Ikrényi C (2000) Physiological time series: distinguishing fractal noises from motions. Pflügers Archiv 439: 403–415

    Article  PubMed  CAS  Google Scholar 

  • Fadel PJ, Barman SM, Phillips SW, Gebber GL (2004) Fractal fluctuations in human respiration. J Appl Physiol 97: 2056–2064

    Article  PubMed  Google Scholar 

  • Flach R (2005) The transition from synchronization to continuation tapping. Hum Mov Sci 24: 465–483

    Article  PubMed  Google Scholar 

  • Gilden DL (2001) Cognitive emissions of 1/f noise. Psychol Rev 108: 33–56

    Article  PubMed  CAS  Google Scholar 

  • Gilden DL, Thornton T, Mallon MW (1995) 1/f noise in human cognition. Science 267: 1837–1839

    Article  PubMed  CAS  Google Scholar 

  • Hausdorff JM, Peng CK, Ladin Z, Wei JY, Goldberger AL (1995) Is walking a random walk?. Evidence for long-range correlations in stride interval of human gait. J Appl Physiol 78: 349–358

    PubMed  CAS  Google Scholar 

  • Hausdorff JM, Purdon PL, Peng CK, Ladin Z, Wei JY, Goldberger AL (1996) Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J Appl Physiol 80: 1448–57

    PubMed  CAS  Google Scholar 

  • Huys R, Jirsa VK, Studenka B, Rheaume N, Zelaznik HN (2008) Human trajectory formation: taxonomy of movement based on phase flow topology. In: Fuchs A (eds) Coordination: neural, behavioral and social dynamics. Springer, Berlin, pp 1–1

    Google Scholar 

  • Ivry RB (1996) The representation of temporal information in perception and motor control. Curr Opin Neurobiol 6: 851–857

    Article  PubMed  CAS  Google Scholar 

  • Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J (2002) The cerebellum and event timing. Ann N Y Acad Sci 978: 302–317

    Article  PubMed  Google Scholar 

  • Kello CT, Beltz BC, Holden JG, Van Orden GC (2007) The emergent coordination of cognitive function. J Exp Psychol Gen 136: 551–568

    Article  PubMed  Google Scholar 

  • Lemoine L, Torre K, Delignières D (2006) Testing for the presence of 1/f noise in continuation tapping data. Can J Exp Psychol 60: 247–257

    PubMed  Google Scholar 

  • Madison G (2004) Fractal modeling of human isochronous serial interval production. Biol Cybern 90: 105–112

    Article  PubMed  Google Scholar 

  • Mates J (1994a) A model of synchronization of motor acts to stimulus sequence: I timing and error corrections. Biol Cybern 70: 463–473

    Article  PubMed  CAS  Google Scholar 

  • Mates J (1994b) A model of synchronization of motor acts to stimulus sequence: II. Stability analysis, error estimation and simulations. Biol Cybern 70: 475–484

    Article  PubMed  CAS  Google Scholar 

  • Novikov E, Novikov A, Shannahoff-Khalsa D, Schwartz B, Wright J (1997) Scale-similar activity in the brain. Phys Rev E 56: R2387–R2389

    Article  CAS  Google Scholar 

  • Ogden RT, Collier GL (1999) On detecting and modeling deterministic drift in long run sequences of tapping data. Comm Stat Th Meth 28: 977–987

    Article  Google Scholar 

  • Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in non stationary heartbeat time series. Chaos 5: 82–87

    Article  PubMed  CAS  Google Scholar 

  • Peng CK, Mietus J, Hausdorff JM, Havlin S, Stanley HE, Goldberger AL (1999) Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Phys Rev Lett 70: 1343–1346

    Article  Google Scholar 

  • Peng CK, Mietus JE, Liu Y, Lee C, Hausdorff JM, Stanley HE, Goldberger AL, Lipsitz LA (2002) Quantifying fractal dynamics of human respiration: age and gender effects. Ann Biomed Eng 30: 683–692

    Article  PubMed  CAS  Google Scholar 

  • Pressing J (1998) Error correction processes in temporal pattern production. J Math Psychol 42: 63–101

    Article  PubMed  Google Scholar 

  • Pressing J (1999) The referential dynamics of cognition and action. Psych Rev 106: 714–747

    Article  Google Scholar 

  • Pressing J, Jolley-Rogers G (1997) Spectral properties of human cognition and skill. Biol Cybern 76: 339–347

    Article  PubMed  CAS  Google Scholar 

  • Repp BH (2005) Sensorimotor synchronization: a review of the tapping literature. Psychon Bull Rev 12: 969–992

    PubMed  Google Scholar 

  • Robertson SD, Zelaznik HN, Lantero DA, Bojczyk G, Spencer RM, Doffin JG, Schneidt T (1999) Correlations for timing consistency among tapping and drawing tasks: evidence against a single timing process for motor control. J Exp Psychol Hum Percept Perform 25: 1316–1330

    Article  PubMed  CAS  Google Scholar 

  • Schöner G (2002) Timing, clocks, and dynamical systems. Brain Cogn 48: 31–51

    Article  PubMed  Google Scholar 

  • Semjen A, Vorberg D, Schulze H-H (1998) Getting synchronized with the metronome: comparison between phase and period correction. Psychol Res 61: 44–55

    Article  Google Scholar 

  • Semjen A, Schulze H-H, Vorberg D (2000) Timing precision in continuation and synchronization tapping. Psychol Res 63: 137– 147

    Article  PubMed  CAS  Google Scholar 

  • Spencer RMC, Ivry RB (2005) Comparison of patients with Parkinson’s disease or cerebellar lesions in the production of periodic movements involving event-based or emergent timing. Brain Cogn 58: 84–93

    Article  PubMed  Google Scholar 

  • Spencer RMC, Ivry RB, Zelaznik HN (2003) Role of the cerebellum in movement: control of timing or movement transitions. Exp Brain Res 161: 383–396

    Article  Google Scholar 

  • Spencer RMC, Zelaznik HN, Diedrichsen J, Ivry RB (2003) Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science 300: 1437–1439

    Article  PubMed  CAS  Google Scholar 

  • Thaut MH, Miller RA (1994) Multiple synchronization strategies in tracking of rhythmic auditory stimulation. Proc Soc Neurosci 146: 11

    Google Scholar 

  • Thaut MH, Miller RA, Schauer LM (1998) Multiple synchronization strategies in rhythmic sensorimotor tasks: phase vs period correction. Biol Cybern 79: 241–250

    Article  PubMed  CAS  Google Scholar 

  • Thornton TL, Gilden DL (2005) Provenance of correlations in psychological data. Psychon Bull Rev 12: 409–441

    PubMed  Google Scholar 

  • Torre K, Delignières D (2008) Distinct ways of timing movements in bimanual coordination tasks: contribution of serial correlation analysis and implications for modeling (submitted)

  • Torre K, Delignières D, Lemoine L (2007) Detection of long-range dependence and estimation of fractal exponents through ARFIMA modeling. Br J Math Stat Psychol 60: 85–106

    Article  PubMed  Google Scholar 

  • Torre K, Wagenmakers E-J (2008) Theories and models for 1/f β noise in human movement science. Hum Mov Sci (in press)

  • Van Orden GC, Holden JG, Turvey MT (2003) Self-organization of cognitive performance. J Exp Psychol Gen 132: 331–350

    Article  PubMed  Google Scholar 

  • Van Orden GC, Holden JG, Turvey MT (2005) Human cognition and 1/fscaling. J Exp Psychol Gen 134: 117–123

    Article  PubMed  Google Scholar 

  • Vorberg D, Schulze H-H (2002) Linear phase-correction in synchronization: predictions, parameter estimation, and simulations. J Math Psychol 46: 56–87

    Article  Google Scholar 

  • Vorberg D, Wing AM (1996) Modeling variability and dependence in timing. In: Keele S, Heuer H (eds) Handbook of perception and action, vol 2. Academic Press, New York, pp 181–262

    Google Scholar 

  • Wagenmakers E-J, Farrell S, Ratcliff R (2004) Estimation and interpretation of 1/f α noise in human cognition. Psychon Bull Rev 11: 579–615

    PubMed  Google Scholar 

  • Wagenmakers E-J, Farrell S, Ratcliff R (2005) Human cognition and a pile of sand: a discussion on serial correlations and self-organized criticality. J Exp Psychol Gen 134: 108–116

    Article  PubMed  Google Scholar 

  • West BJ, Scafetta N (2003) Nonlinear dynamical model of human gait. Phys Rev E 67: 051917

    Article  CAS  Google Scholar 

  • West BJ, Zhang R, Sanders AW, Miliyar S, Zucherman JH, Levine B (1999) Fractal fluctuations in cardiac time series. Physica A 270: 552–566

    Article  PubMed  CAS  Google Scholar 

  • Wing AM, Kristofferson AB (1973) The timing of interresponse intervals. Percept Psychophys 13: 455–460

    Google Scholar 

  • Yamada N (1995) Nature of variability in rhythmical movement. Hum Mov Sci 14: 371–384

    Article  Google Scholar 

  • Zelaznik HN, Spencer RM, Doffin JG (2000) Temporal precision in tapping and circle drawing movements at preferred rates is not correlated: further evidence against timing as a general-purpose ability. J Mot Behav 32: 193–199

    Article  PubMed  CAS  Google Scholar 

  • Zelaznik HN, Spencer RM, Ivry RB (2002) Dissociation of explicit and implicit timing in repetitive tapping and drawing movements. J Exp Psychol Hum Percept Perform 28: 575–588

    Article  PubMed  Google Scholar 

  • Zelaznik HN, Spencer RM, Ivry RB, Baria A, Bloom M, Dolansky L, Justice S, Patterson K, Whetter E (2005) Timing variability in circle drawing and tapping: probing the relationship between event and emergent timing. J Mot Behav 37: 395–403

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kjerstin Torre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torre, K., Delignières, D. Unraveling the finding of 1/f β noise in self-paced and synchronized tapping: a unifying mechanistic model. Biol Cybern 99, 159–170 (2008). https://doi.org/10.1007/s00422-008-0247-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0247-8

Keywords

Navigation