Skip to main content

Advertisement

Log in

Automated neuron model optimization techniques: a review

  • Review
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The increase in complexity of computational neuron models makes the hand tuning of model parameters more difficult than ever. Fortunately, the parallel increase in computer power allows scientists to automate this tuning. Optimization algorithms need two essential components. The first one is a function that measures the difference between the output of the model with a given set of parameter and the data. This error function or fitness function makes the ranking of different parameter sets possible. The second component is a search algorithm that explores the parameter space to find the best parameter set in a minimal amount of time. In this review we distinguish three types of error functions: feature-based ones, point-by-point comparison of voltage traces and multi-objective functions. We then detail several popular search algorithms, including brute-force methods, simulated annealing, genetic algorithms, evolution strategies, differential evolution and particle-swarm optimization. Last, we shortly describe Neurofitter, a free software package that combines a phase–plane trajectory density fitness function with several search algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achard P, De Schutter E (2006) Complex parameter landscape for a complex neuron model. PLoS Comput Biol 2: e94

    Article  PubMed  CAS  Google Scholar 

  • Audet C, Orban D (2004) Finding optimal algorithmic parameters using a mesh adaptive direct search. Cahiers du GERAD G-2004-xx

  • Baldi P, Vanier MC, Bower JM (1998) On the use of Bayesian methods for evaluating compartmental neural models. J Comput Neurosci 5: 285–314

    Article  CAS  PubMed  Google Scholar 

  • Banga JR, Moles CG, Alonso AA (2003) Global optimization of bioprocesses using stochastic and hybrid methods. In: Floudas CA, Pardalos PM (eds) Frontiers in global optimization. Nonconvex optimization and its applications. Kluwer, Dordrecht, pp 45–70

    Google Scholar 

  • Bhalla US, Bower JM (1993) Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. J Neurophysiol 69: 1948–1965

    CAS  PubMed  Google Scholar 

  • Bower JM, Beeman D (1998) The book of GENESIS exploring realistic neural models with the GEneral NEural SImulation System, 2nd edn. Springer, New York

    Google Scholar 

  • Broyden CG (1967) Quasi-Newton methods and their application to function minimisation. Math Comput 21: 368–381

    Article  Google Scholar 

  • Bush K, Knight J, Anderson C (2005) Optimizing conductance parameters of cortical neural models via electrotonic partitions. Neural Netw 18: 488–496

    Article  PubMed  Google Scholar 

  • Butera RJ, Rinzel J, Smith JC (1999) Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. J Neurophysiol 82: 382–397

    PubMed  Google Scholar 

  • Cohon JL (1985) Multicriteria programming: brief review and application. In: Gero JS (eds) Design optimization. Academic Press, New York

    Google Scholar 

  • Davison AP, Feng J, Brown D (2000) A reduced compartmental model of the mitral cell for use in network models of the olfactory bulb. Brain Res Bull 51: 393–399

    Article  CAS  PubMed  Google Scholar 

  • Druckmann S, Banitt Y, Gideon A, Schurmann F, Markram H, Segev I (2007) A novel multiple objective optimization framework for automated constraining of conductance-based neuron models by noisy experimental data. Front Neurosci 1: 7–18

    Article  PubMed  Google Scholar 

  • Eiben AE, Schippers CA (1998) On evolutionary exploration and exploitation. Fundam Inf 35: 35–50

    Google Scholar 

  • Eiben AE, Smith JE (2003) Introduction to evolutionary computing. Springer, Heidelberg

    Google Scholar 

  • Fonseca CM, Fleming PJ (1993) Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. Genetic algorithms: proceedings of the fifth international conference, pp 416–23

  • Foster WR, Ungar LH, Schwaber JS (1993) Significance of conductances in Hodgkin–Huxley models. J Neurophysiol 70: 2502–2518

    CAS  PubMed  Google Scholar 

  • Gerken WC, Purvis LK, Butera RJ (2006) Genetic algorithm for optimization and specification of a neuron model. Neurocomputing 69: 1039–1042

    Article  Google Scholar 

  • Goldberg DE, Richardson J (1987) Genetic algorithms with sharing for multimodal function optimization. Proceedings of the second international conference on genetic algorithms on genetic algorithms and their application, pp 41–9

  • Goldberg DE, Voessner S (1999) Optimizing global-local search hybrids. Proc Gen Evol Comput Conf 1: 220–228

    Google Scholar 

  • Goldman MS, Golowasch J, Marder E, Abbott LF (2001) Global structure, robustness, and modulation of neuronal models. J Neurosci 21: 5229–5238

    CAS  PubMed  Google Scholar 

  • Golowasch J, Goldman MS, Abbott LF, Marder E (2002) Failure of averaging in the construction of a conductance-based neuron model. J Neurophysiol 87: 1129–1131

    PubMed  Google Scholar 

  • Handl J, Kell DB, Knowles J (2007) Multiobjective optimization in bioinformatics and computational biology. IEEE/ACM Trans Comput Biol Bioinform 4: 279–292

    Article  CAS  PubMed  Google Scholar 

  • Haufler D, Morin F, Lacaille JC, Skinner FK (2007) Parameter estimation in single-compartment neuron models using a synchronization-based method. Neurocomputing 70: 1605–1610

    Article  Google Scholar 

  • Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9: 1179–1209

    Article  CAS  PubMed  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Holmes W, Ambros-Ingerson J, Grover L (2006) Fitting experimental data to models that use morphological data from public databases. J Comput Neurosci 20: 349–365

    Article  CAS  PubMed  Google Scholar 

  • Horn J, Nafpliotis N, Goldberg DE (1994) A Niched Pareto genetic algorithm for multiobjective optimization. Proc First IEEE Conf Evol Comput IEEE World Cong Comput Intell 1: 82–87

    Google Scholar 

  • Huys QJ, Ahrens MB, Paninski L (2006) Efficient estimation of detailed single-neuron models. J Neurophysiol 96: 872–890

    Article  PubMed  Google Scholar 

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. Proceedings of the IEEE international joint conference on neural networks, pp 1942–948

  • Keren N, Peled N, Korngreen A (2005) Constraining compartmental models using multiple voltage recordings and genetic algorithms. J Neurophysiol 94: 3730–3742

    Article  PubMed  Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598): 671–680

    Article  PubMed  Google Scholar 

  • LeMasson M (2001) Introduction to equation solving and parameter fitting. In: Computational neuroscience: realistic modeling for experimentalists. CRC Press, London, pp 1–3

  • Lewicki MS (1998) A review of methods for spike sorting: the detection and classification of neural action potentials. Network 9: R53–R78

    Article  CAS  PubMed  Google Scholar 

  • Nourani Y, Andresen B (1998) A comparison of simulated annealing cooling strategies. J Phys Math General 31: 8373–8385

    Article  Google Scholar 

  • Olypher AV, Calabrese RL (2007) Using constraints on neuronal activity to reveal compensatory changes in neuronal parameters. J Neurophysiol 98: 3749–3758

    Article  PubMed  Google Scholar 

  • Pettinen A, Yli-Harja O, Linne M (2006) Comparison of automated parameter estimation methods for neuronal signaling networks. Neurocomputing 69: 1371–1374

    Article  Google Scholar 

  • Potter MA, De Jong K (1994) A cooperative coevolutionary approach to function optimization. Parallel Problem Solving Nature (PPSN) III: 249–257

    Google Scholar 

  • Price K, Storn RM, Lampinen JA (2005a) Differential evolution: a practical approach to global optimization (Natural computing series). Springer, New York

    Google Scholar 

  • Price K, Storn RM, Lampinen JA (2005b) The motivation for differential evolution. In: Differential evolution: a practical approach to global optimization (Natural Computing Series). Springer, Berlin, pp 1–6

  • Prinz AA, Billimoria CP, Marder E (2003) Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. J Neurophysiol 90: 3998–4015

    Article  PubMed  Google Scholar 

  • Rechenberg I (1973) Evolutionsstrategie: optimierung technischer systeme nach prinzipien der biologischen evolution. Frommann-Holzboog, Stuttgart

    Google Scholar 

  • Reid MS, Brown EA, DeWeerth SP (2007) A parameter-space search algorithm tested on a Hodgkin–Huxley model. Biol Cybern 96: 625–634

    Article  PubMed  Google Scholar 

  • Srinivas N, Deb K (1994) Multiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2: 221–248

    Article  Google Scholar 

  • Swensen AM, Bean BP (2005) Robustness of burst firing in dissociated purkinje neurons with acute or long-term reductions in sodium conductance. J Neurosci 25: 3509–3520

    Article  CAS  PubMed  Google Scholar 

  • Tabak J, Murphey CR, Moore LE (2000) Parameter estimation methods for single neuron models. J Comput Neurosci 9: 215–236

    Article  CAS  PubMed  Google Scholar 

  • Taylor AL, Hickey TJ, Prinz AA, Marder E (2006) Structure and visualization of high-dimensional conductance spaces. J Neurophysiol 96: 891–905

    Article  PubMed  Google Scholar 

  • Tobin AE, Calabrese RL (2006) Endogenous and half-center bursting in morphologically inspired models of leech heart interneurons. J Neurophysiol 96: 2089–2106

    Article  PubMed  Google Scholar 

  • Van Geit W, Achard P, De Schutter E (2007) Neurofitter: a parameter tuning package for a wide range of electrophysiological neuron models. Front Neuroinformatics 1: 1

    PubMed  Google Scholar 

  • Vanier MC, Bower JM (1999) A comparative survey of automated parameter-search methods for compartmental neural models. J Comput Neurosci 7: 149–171

    Article  CAS  PubMed  Google Scholar 

  • Weaver CM, Wearne SL (2006) The role of action potential shape and parameter constraints in optimization of compartment models. Neurocomputing 69: 1053–1057

    Article  Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1: 67–82

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. De Schutter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Geit, W., De Schutter, E. & Achard, P. Automated neuron model optimization techniques: a review. Biol Cybern 99, 241–251 (2008). https://doi.org/10.1007/s00422-008-0257-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0257-6

Keywords

Navigation