Skip to main content
Log in

Modelled temperature-dependent excitability behaviour of a single ranvier node for a human peripheral sensory nerve fibre

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The objective of this study was to determine whether the Hodgkin–Huxley model for unmyelinated nerve fibres could be modified to predict excitability behaviour at Ranvier nodes. Only the model parameters were modified to those of human, with the equations left unaltered. A model of a single Ranvier node has been developed as part of a larger model to describe excitation behaviour in a generalised human peripheral sensory nerve fibre. Parameter values describing the ionic and leakage conductances, corresponding equilibrium potentials, resting membrane potential and membrane capacitance of the original Hodgkin–Huxley model were modified to reflect the corresponding parameter values for human. Parameter temperature dependence was included. The fast activating potassium current kinetics were slowed down to represent those of a slow activating and deactivating potassium current, which do not inactivate. All calculations were performed in MATLABTM. Action potential shape and amplitude were satisfactorily predicted at 20, 25 and 37°C, and were not influenced by activation or deactivation of the slow potassium current. The calculated chronaxie time constant was 65.5 μs at 37°C. However, chronaxie times were overestimated at temperatures lower than body temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HH model:

Hodgkin–Huxley model

References

  • Atkins PW (1995) Physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  • Blight AR (1985) Computer simulation of action potentials and afterpotentials in mammalian myelinated axons: The case for a lower resistance myelin sheath. Neuroscience 15: 13–31

    Article  PubMed  CAS  Google Scholar 

  • Boiko T, Rasband MN, Levinson SR, Caldwell JH, Mandel G, Trimmer JS, Matthews G (2001) Compact myelin dictates the differential targeting of two sodium channel isoforms in the same axon. Neuron 30: 91–104

    Article  PubMed  CAS  Google Scholar 

  • Bostock H (1983) The strength-duration relationship for excitation of myelinated nerve: Computed dependence on membrane parameters. J Physiol (Lond) 341: 59–74

    CAS  Google Scholar 

  • Bostock H, Rothwell JC (1997) Latent addition in motor and sensory fibres of human peripheral nerve. J Physiol (Lond) 498: 277–294

    CAS  Google Scholar 

  • Bostock H, Sears TA, Sherratt RM (1983) The spatial distribution of excitability and membrane current in normal and demyelinated mammalian nerve fibres. J Physiol (Lond) 341: 41–58

    CAS  Google Scholar 

  • Buchthal F, Rosenfalck A (1966) Evoked action potentials and conduction velocity in human sensory nerves. Brain Res 3: 1–122

    Article  Google Scholar 

  • Burke D, Mogyoros I, Vagg R, Kiernan MC (1999) Temperature dependence of excitability indices of human cutaneous afferents. Muscle Nerve 22: 51–60

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA, Goldin AL, Waxman SG (2005) International union of pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 57: 397–409

    Article  PubMed  CAS  Google Scholar 

  • Chiu SY, Ritchie JM, Rogart RB, Stagg D (1979) A quantitative description of membrane currents in rabbit myelinated nerve. J Physiol (Lond) 292: 149–166

    CAS  Google Scholar 

  • Colombo J, Parkins CW (1987) A model of electrical excitation of the mammalian auditory-nerve neuron. Hear Res 31: 287–312

    Article  PubMed  CAS  Google Scholar 

  • Devaux JJ, Kleopa KA, Cooper EC, Scherer SS (2004) KCNQ2 is a nodal K+ Channel. J Neurosci 24: 1236–1244

    Article  PubMed  CAS  Google Scholar 

  • Frankenhaeuser B, Huxley AF (1964) The action potential in the myelinated nerve fibre of Xenopus laevis as computed on the basis of voltage clamp data. J Physiol (Lond) 171: 302–315

    CAS  Google Scholar 

  • Frijns JHM, Mooij J, ten Kate JH (1994) A quantitative approach to modeling mammalian myelinated nerve fibers for electrical prosthesis design. IEEE Trans Biomed Eng 41: 556–566

    Article  PubMed  CAS  Google Scholar 

  • Frijns JHM, ten Kate JH (1994) A model of myelinated nerve fibres for electrical prosthesis design. Med Biol Eng Comput 32: 391–398

    Article  PubMed  CAS  Google Scholar 

  • Hille B (2001) Ionic channels of excitable membrane. Sinauer Associates Inc., Sunderland, Massachusetts

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117: 500–544

    CAS  Google Scholar 

  • Huxley AF (1959) Ion movements during nerve activity. Ann N Y Acad Sci 81: 221–246

    Article  PubMed  CAS  Google Scholar 

  • Huys QJM, Ahrens MB, Paninski L (2006) Efficient estimation of detailed single-neuron models. J Neurophysiol 96: 872–890

    Article  PubMed  Google Scholar 

  • Kiernan MC, Cikurel K, Bostock H (2001) Effects of temperature on the excitability properties of human motor axons. Brain 124: 816–825

    Article  PubMed  CAS  Google Scholar 

  • Lowitzsch K, Hopf HC, Galland J (1977) Changes of sensory conduction velocity and refractory periods with decreasing tissue temperature in man. J Neurol 216: 181–188

    Article  PubMed  CAS  Google Scholar 

  • Moore JW, Joyner RW, Brill MH, Waxman SD, Najar-Joa M (1978) Simulations of conduction in uniform myelinated fibers. Relative sensitivity to changes in nodal and internodal parameters. Biophys J 21: 147–160

    Article  PubMed  CAS  Google Scholar 

  • Palti Y, Adelman WJ Jr, (1969) Measurement of axonal membrane conductances and capacity by means of a varying potential control voltage clamp. J Membr Biol 1: 431–458

    Article  Google Scholar 

  • Rasband MN (2006) Neuron-glia interactions at the node of Ranvier. In: Gundelfinger E, Seidenbecher C, Schraven B (eds) Cell communication in nervous and immune system. Springer, Berlin , pp 129–149

    Chapter  Google Scholar 

  • Rasband MN, Trimmer JS (2001) Developmental clustering of ion channels at and near the node of Ranvier. Dev Biol 236: 5–16

    Article  PubMed  CAS  Google Scholar 

  • Rattay F, Aberham M (1993) Modeling axon membranes for functional electrical stimulation. IEEE Trans Biomed Eng 40: 1201–1209

    Article  PubMed  CAS  Google Scholar 

  • Rattay F, Lutter P, Felix H (2001) A model of the electrically excited human cochlear neuron I. Contribution of neural substructures to the generation and propagation of spikes. Hear Res 153: 43–63

    Article  PubMed  CAS  Google Scholar 

  • Rattay F, Resatz S, Lutter P, Minassian K, Jilge B, Dimitrijevic MR (2003) Mechanisms of electrical stimulation with neural prostheses. Neuromodulation 6: 42–56

    Article  Google Scholar 

  • Reid G, Bostock H, Schwarz JR (1993) Quantitative description of action potentials and membrane currents in human node of Ranvier. J Physiol (Lond) 467: 247P

    Google Scholar 

  • Reid G, Scholz A, Bostock H, Vogel W (1999) Human axons contain at least five types of voltage-dependent potassium channel. J Physiol (Lond) 518: 681–696

    Article  CAS  Google Scholar 

  • Röper J, Schwarz JR (1989) Heterogeneous distribution of fast and slow potassium channels in myelinated rat nerve fibres. J Physiol (Lond) 416: 93–110

    Google Scholar 

  • Safronov BV, Kampe K, Vogel W (1993) Single voltage-dependent potassium channels in rat peripheral nerve membrane. J Physiol (Lond) 460: 675–691

    CAS  Google Scholar 

  • Salzer JL (1997) Clustering sodium channels at the node of Ranvier: close encounters of the axon-glia kind. Neuron 18: 843–846

    Article  PubMed  CAS  Google Scholar 

  • Scholz A, Reid G, Vogel W, Bostock H (1993) Ion channels in human axons. J Neurophysiol 70: 1274–1279

    PubMed  CAS  Google Scholar 

  • Schwarz JR, Eikhof G (1987) Na currents and action potentials in rat myelinated nerve fibres at 20 and 37°C. Pflügers Arch 409: 569–577

    Article  PubMed  CAS  Google Scholar 

  • Schwarz JR, Glassmeier G, Cooper EC, Kao T-C, Nodera H, Tabuena D, Kaji R, Bostock H (2006) KCNQ channels mediate IKs, a slow K+ current regulating excitability in the rat node of Ranvier. J Physiol (Lond) 573: 17–34

    Article  CAS  Google Scholar 

  • Schwarz JR, Reid G, Bostock H (1995) Action potentials and membrane currents in the human node of Ranvier. Pflügers Arch Eur J Physiol 430: 283–292

    Article  CAS  Google Scholar 

  • Smit JE (2008) Modelled response of the electrically stimulated human auditory nerve fibre. Ph.D. thesis. University of Pretoria, Pretoria

  • Smit JE, Hanekom T, Hanekom JJ (2008) Predicting action potential characteristics of human auditory nerve fibres through modification of the Hodgkin–Huxley equations. S Afr J Sci 104: 284–292

    Google Scholar 

  • Taylor JT, Burke D, Heywood J (1992) Physiological evidence for a slow K+ conductance in human cutaneous afferents. J Physiol (Lond) 453: 575–589

    CAS  Google Scholar 

  • Vabnick L, Shrager P (1998) Ion channel redistribution and function during development of the myelinated axon. J Neurobiol 37: 80–96

    Article  PubMed  CAS  Google Scholar 

  • Weiss G (1901) Sur la possibilité de rendre comparables entre eux les appareils servant a l’excitation électrique. Arch Ital Biol 35: 413–446

    Google Scholar 

  • Wesselink WA, Holsheimer J, Boom HBK (1999) A model of the electrical behaviour of myelinated sensory nerve fibres based on human data. Med Biol Eng Comput 37: 228–235

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania Hanekom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smit, J.E., Hanekom, T. & Hanekom, J.J. Modelled temperature-dependent excitability behaviour of a single ranvier node for a human peripheral sensory nerve fibre. Biol Cybern 100, 49–58 (2009). https://doi.org/10.1007/s00422-008-0280-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0280-7

Keywords

Navigation