Skip to main content
Log in

Two-point heterogeneous connections in a continuum neural field model

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We examine a novel heterogeneous connection scheme in a 1D continuum neural field model. Multiple two-point connections are added to a local connection function in order to model the “patchy” connections seen in, for example visual cortex. We use a numerical approach to solve the equations, choosing the locations of the two-point connections stochastically. We observe self-sustained persistent fluctuations of activity which can be classified into two types (one of which is similar to that seen in network models of discrete excitable neurons, the other being particular to this model). We study the effect of parameters such as system size and the range, number and strength of connections, on the probability that a particular realisation of the connections is able to exhibit persistent fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amari SI (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern 27: 77–87

    Article  PubMed  CAS  Google Scholar 

  • Bao W, Wu JY (2003) Propagating wave and irregular dynamics: Spatiotemporal patterns of cholinergic theta oscillations in neocortex in vitro. J Neurophys 90: 333–341

    Article  Google Scholar 

  • Brackley CA, Turner MS (2007) Random fluctuations of the firing rate function in a continuum neural field model. Phys Rev E 75: 041,913

    Article  CAS  Google Scholar 

  • Brackley CA, Turner MS (2009) Persistent fluctuations of activity in undriven continuum neural field models with power-law connections. Phys Rev E 79: 011918

    Article  CAS  Google Scholar 

  • Bressloff PC (1996) New mechanism for neural pattern formation. Phys Rev Lett 76(24): 4644–4647

    Article  PubMed  CAS  Google Scholar 

  • Bressloff PC (2001) Traveling fronts and wave propagation failure in an inhomogeneous neural network. Phys D Nonlinear Phenom 155(1–2): 83–100

    Article  Google Scholar 

  • Bressloff PC (2003) Spatially periodic modulation of cortical patterns by long-range horizontal connections. Phys D Nonlinear Phenom 185(3–4): 131–157

    Article  Google Scholar 

  • Bressloff PC, Folias SE, Prat A, Li YX (2003) Oscillatory waves in inhomogeneous neural media. Phys Rev Lett 91(17): 178,101

    Article  CAS  Google Scholar 

  • Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8: 183–208

    Article  PubMed  CAS  Google Scholar 

  • Buzás P, Eysel UT, Adorján P, Kisvárday ZF (2001) Axonal topography of cortical basket cells in relation to orientation, dierection, and ocular dominance maps. J Comp Neurol 437: 259–285

    Article  PubMed  Google Scholar 

  • Coombes S (2005) Waves, bumps, and patterns in neural field theories. Biol Cybern 93: 91–108

    Article  PubMed  CAS  Google Scholar 

  • Coombes S, Owen MR (2005) Bumps, breathers, and waves in a neural network with spike frequency adaption. Phys Rev Lett 94: 148,102

    Article  CAS  Google Scholar 

  • Coombes S, Lord GJ, Owen MR (2003) Waves and bumps in neuronal networks with axo-dendritic synaptic interactions. Phys D Nonlinear Phenom 178: 219–241

    Article  Google Scholar 

  • Cossart R, Aronov D, Yuste R (2003) Attractor dynamics of network up states in the neocortex. Nature 423: 283–288

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout GB, Cowan JD (1979) A mathematical theory of visual hallucination patterns. Biol Cybern 34: 137–150

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout GB, McLeod JB (1993) Existence and uniqueness of travelling waves for a neural network. Proc Sect A Math R Soc Edinb 123: 461–478

    Google Scholar 

  • Frigo M, Johnson SG (2005) The design and implementation of fftw3. Proc IEEE 93: 216–231

    Article  Google Scholar 

  • Hellwig B (2000) A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol Cybern 82: 111–121

    Article  PubMed  CAS  Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79(8): 2554–2558

    Article  PubMed  CAS  Google Scholar 

  • Hutt A, Atay FM (2005) Analysis of nonlocal neural fields for both general and gamma-distributed connectivities. Phys D Nonlinear Phenom 203: 30–54

    Article  Google Scholar 

  • Hutt A, Wennekers T, Bestehorn M (2003) Pattern formation in intracortical neuronal fields. Netw Comput Neural Syst 14: 351–368

    Article  Google Scholar 

  • Jirsa VK (2004) Connectivity and dynamics of neural information processing. Neuroinformatics 2: 183–204

    Article  PubMed  Google Scholar 

  • Jirsa VK, Kelso JAS (2000) Spatiotemporal pattern formation in neural systems with heterogeneous connection topologies. Phys Rev E 62(6): 8462–8465

    Article  CAS  Google Scholar 

  • Malach R, Tootell RBH, Malonek D (1994) Relationship bewteen orientation domains, cytochrome oxidase stripes, and intrinsic horizontal connections in squirrel monkey area v2. Cereb Cortex 4(2): 151–165

    Article  PubMed  CAS  Google Scholar 

  • McCormick DA, Connors BW, Lighthall JW, Prince DA (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54(4): 782–806

    PubMed  CAS  Google Scholar 

  • Nunez PL, Srinivason R (2006) Electric fields of the Brain—the neurophysics of EEG, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Pinto DJ, Ermentrout GB (2001) Spatially structured activity in synaptically coupled neuronal networks: I. travelling fronts and pulses. SIAM J Appl Math 62: 206–225

    Article  Google Scholar 

  • Press H, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in fortran, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Qubbaj MR, Jirsa VK (2007) Neural field dynamics with heterogeneous connection topology. Phys Rev Lett 98(23): 238,102

    Article  Google Scholar 

  • Robinson PA, Rennie CJ, Rowe DL (2002) Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys Rev E 65(4): 041,924

    Article  CAS  Google Scholar 

  • Roxin A, Riecke H, Solla SA (2004) Self-sustained activity in a small-world network of excitable neurons. Phys Rev Lett 92: 198,101

    Article  Google Scholar 

  • Segev R, Benveniste M, Hulata E, Cohen N, Palevski A, Kapon E, Shapira Y, Ben-Jacob E (2002) Long term behavior of lithographically prepared in vitro neuronal networks. Phys Rev Lett 88: 118,102

    Article  Google Scholar 

  • Sobol’ IM (1967) The distribution of points in a cube and the accurate evaluation of integrals. USSR Comput Math Math Phys 7(4): 86–112

    Article  Google Scholar 

  • Venkov N, Coombes S, Matthews P (2007) Dynamic instabilities in scalar neural field equations with space-dependent delays. Phys D Nonlinear Phenom 232: 1–15

    Article  Google Scholar 

  • Wang XJ (2001) Synaptic reverberation underlying mnemonic persistent activity. TRENDS Neurosci 24: 455–463

    Article  PubMed  CAS  Google Scholar 

  • Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12: 1–23

    Article  PubMed  CAS  Google Scholar 

  • Wu JY, Guan L, Tsau Y (1999) Propagating activation during oscillations and evoked responses in neocortical slices. J Neurosci 19: 5005–5015

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Brackley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brackley, C.A., Turner, M.S. Two-point heterogeneous connections in a continuum neural field model. Biol Cybern 100, 371–383 (2009). https://doi.org/10.1007/s00422-009-0308-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-009-0308-7

Keywords

Navigation