Skip to main content
Log in

What can be learnt from analysing insect orientation flights using probabilistic SLAM?

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In this paper, we provide an analysis of orientation flights in bumblebees, employing a novel technique based on simultaneous localisation and mapping (SLAM) a probabilistic approach from autonomous robotics. We use SLAM to determine what bumblebees might learn about the locations of objects in the world through the arcing behaviours that are typical of these flights. Our results indicate that while the bees are clearly influenced by the presence of a conspicuous landmark, there is little evidence that they structure their flights to specifically learn about the position of the landmark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker L (1958) Untersuchungen über das Heimfindevermögen der Bienen. Z Vergl Physiol 41: 1–25

    Google Scholar 

  • Capaldi EA, Smith AD, Osborne JL, Fahr-Bach SE, Farris SM, Reynolds DR, Edwards AS, Martin A, Robinson GE, Poppy GM, Riley JR (2000) Ontogeny of orientation flight in the honeybee revealed by harmonic radar. Nature 403: 537–540

    Article  PubMed  CAS  Google Scholar 

  • Cheng K, Collett TS, Pickhard A, Wehner R (1987) The use of visual landmarks by honeybees: Bees weight landmarks according to their distance to the goal. J Comp Physiol A 161: 469–475

    Article  Google Scholar 

  • Cheng K, Shettleworth S, Huttenlocher J, Rieser J (2007) Bayesian integration of spatial information. Psychol Bull 133(4): 625–637

    Article  PubMed  Google Scholar 

  • Collett T (1995) Making learning easy: the acquisition of visual information during the orientation flights of social wasps. J Comp Physiol A 177: 737–747

    Google Scholar 

  • Collett T, Lehrer M (1993) Looking and Learning: A Spatial Pattern in the Orientation Flight of the Wasp Vespula vulgaris. Proc R Soc 252(1334): 129–134

    Article  Google Scholar 

  • Collett T, Zeil J (1997) The selection and use of landmarks by insects. In: Lehrer M (eds) Orientation and communication in arthropods. Birkhauser, Basel, pp 41–65

    Google Scholar 

  • Courville A, Daw N, Touretzky D (2006) Bayesian theories of conditioning in a changing world. Trends Cognit Sci 10: 294–300

    Article  Google Scholar 

  • Cummins M, Newman P (2008) FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearances. Int J Robot Res 27(6): 647–665

    Article  Google Scholar 

  • Davison A, Murray D (2002) Simultaneous Localisation and Map-Building Using active Vision. IEEE Trans PAMI 24(7): 865–880

    Google Scholar 

  • Dissanayake M, Newman P, Clark S, Durrant-Whyte H, Csorba M (2001) A solution to the simultaneous localization and map building (SLAM) problem. IEEE Trans Robot Autom 17(3): 229–241

    Article  Google Scholar 

  • Durrant-Whyte H, Bailey T (2006) Simultaneous localisation and mapping (SLAM): part i the essential algorithms. Robot Autom Mag 13: 99–110

    Article  Google Scholar 

  • Gallistel CR (1989) Animal cognition: The representation of space, time, and number. Annu Rev Psychol 40: 155–189

    Article  PubMed  CAS  Google Scholar 

  • Gould JL (1986) The Locale Map of Honey Bees: Do Insects Have Cognitive Maps?. Science 232(4752): 861–863

    Article  PubMed  Google Scholar 

  • Griffiths T, Kemp C, Tenenbaum J (2008) Bayesian models of cognition. The Cambridge handbook of computational cognitive modeling. Chap. 3. Cambridge University Press, London

    Google Scholar 

  • Guivant J, Nebot E (2001) Optimization of the simultaneous localization and map-building algorithm for real-time implementation. IEEE Trans Robot Autom 17(3): 242–257

    Article  Google Scholar 

  • Jander R (1997) Macroevolution of a fixed action pattern for learning: the exploration flights of bees and wasps. In: Greenberg G, Tobach E (eds) Comparative psychology of invertebrates: the field and laboratory study of insect behavior. Garland, New York, pp 79–99

    Google Scholar 

  • Knill D, Pouget A (2004) The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci 27(12): 712–719

    Article  PubMed  CAS  Google Scholar 

  • Kording K, Wolpert D (2006) Bayesian decision theory in sensorimotor control. Trends Cognit Sci 10: 319–326

    Article  Google Scholar 

  • Land M (1999) Motion and vision: why animals move their eyes. J Comp Physiol 185: 341–352

    Article  CAS  Google Scholar 

  • Lee T, Mumford D (2003) Hierarchical Bayesian inference in the visual cortex. J Opt Soc Am A 20(7): 1434–1448

    Article  Google Scholar 

  • Lehrer M (1991) Bees which turn back and look. Naturwissenschaften 78: 274–276

    Article  Google Scholar 

  • Lehrer M (1993) Why do bees turn back and look?. J Comp Physiol A 172: 549–563

    Article  Google Scholar 

  • Lehrer M, Collett TS (1994) Approaching and departing bees learn different cues to the distance of a landmark. J Comp Physiol A 175: 171–177

    Article  Google Scholar 

  • Menzel R, Greggers U, Smith A, Berger S, Brandt R, Brunke S, Bundrock G, Hülse S, Plümpe T, Schaupp F, Schüttler E, Stach S, Stindt J, Stollhoff N, Watzl S (2005) Honey bees navigate according to a map-like spatial memory. PNAS 102(8): 3040–3045

    Article  PubMed  CAS  Google Scholar 

  • Milford M, Wyeth G (2008) Mapping a suburb with a single camera using a biologically inspired slam system. IEEE Trans Robot 24(5): 1038–1053

    Article  Google Scholar 

  • Montemerlo M, Thrun S, Koller D, Wegbreit B (2002) Fast-SLAM: A factored solution to the simultaneous localization and mapping problem. Proc AAAI Natl Conf Artif Intell 2002: 593–598

    Google Scholar 

  • Rao R (2004) Hierarchical Bayesian inference in networks of spiking neurons. Adv. neural information processing systems (NIPS 04), vol 17. MIT Press, Cambridge

    Google Scholar 

  • Seidl R, Kaiser W (1981) Visual field size, binocular domain and ommatidial array of the compound eyes of honey bees. J comp Physiol A 143: 17–26

    Article  Google Scholar 

  • Smith R, Self M, Cheeseman P (1990) Estimating uncertain spatial relationships in robotics. In: Cox IJ, Wilfon GT (eds) Autonomous Robot Vehicles. Springer, Heidelberg, pp 167–193

    Google Scholar 

  • Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: Flower size and color affect search time and flight behavior. PNAS 98(7): 3898–3903

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan M, Zhang S, Bidwell N (1997) Visually mediated odometry in honeybees. J Exp Biol 200: 2513–2522

    PubMed  Google Scholar 

  • Thrun S, Fox D, Burgard W (1998) A probabilistic approach to concurrent mapping and localization for mobile robots. Mach Learn 31(1): 29–53

    Article  Google Scholar 

  • Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT Press, Cambridge

    Google Scholar 

  • Vollbehr J (1975) Zur Orientierung junger Honigbienen bei ihrem ersten Orientierungsflug. Zool Jb allg Zool Physiol 79: 33–69

    Google Scholar 

  • van Iersel J, van den Assem J (1964) Aspects of orientation in the digger wasp Bembix rostrata. Anim Behav (Suppl I):145–162

  • von Frisch K (1967) The dance language and orientation of bees. Belknap/Harvard University Press, Cambridge

    Google Scholar 

  • Voss R, Zeil J (1998) Active vision in insects: an analysis of object-directed zig-zag flights in a ground-nesting wasp (Odynerus spinipes, Eumenidae). J Comp Physiol A 182: 377–387

    Article  Google Scholar 

  • Wehner R (1981) Spatial vision in arthropods. Handbook of sensory physiology VII/6C. Springer, Heidelberg, pp 287–616

    Google Scholar 

  • Wehner R, Menzel R (1990) Do insects have cognitive maps?. Annu Rev Neurosci 13: 403–414

    PubMed  CAS  Google Scholar 

  • Wehner R, Boyer M, Loertscher F, Sommer S, Menzi U (2006) Ant navigation: one-way routes rather than maps

  • Yuille A, Kersten D (2006) Vision as Bayesian inference: analysis by synthesis?. Trends Cognit Sci 10: 301–308

    Article  Google Scholar 

  • Zeil J (1993a) Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera). I Description of flight. J Comp Physiol A 172: 189–205

    Article  Google Scholar 

  • Zeil J (1993b) Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera). II Similarities between orientation and return flights and the use of motion parallax. J Comp Physiol A 172: 207–222

    Article  Google Scholar 

  • Zeil J, Kelber A (1991) Orientation flights in ground nesting wasps and bees share a common organization. Verh Dtsch Zool Ges 84: 371–372

    Google Scholar 

  • Zeil J, Kelber A, Voss R (1996) Structure and function of learning flights in bees and wasps. J Exp Biol 199: 245–252

    PubMed  Google Scholar 

  • Zeil J, Boeddecker N, Hemmi J, Stürzl W (2007) Going wild: towards an ecology of visual information processing. In: North G, Greenspan R (eds.) Invertebrate neurobiology. Cold Spring Harbor Monograph Series 49. Chap. 15

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartholomew Baddeley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baddeley, B., Philippides, A., Graham, P. et al. What can be learnt from analysing insect orientation flights using probabilistic SLAM?. Biol Cybern 101, 169–182 (2009). https://doi.org/10.1007/s00422-009-0327-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-009-0327-4

Keywords

Navigation