Skip to main content
Log in

Estimation of psychomotor delay from the Fitts’ law coefficients

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

An intrinsic property of human motor behavior is a trade-off between speed and accuracy. This is classically described by Fitts’ law, a model derived by assuming that the human body has a limited capacity to transmit information in organizing motor behavior. However, Fitts’ law can also be realized as an emergent property of movements generated by delayed feedback. In this article, we describe the relationship between the Fitts’ law coefficients and the physiological parameters of the underlying delayed feedback circuit: the relaxation rate or time constant, and the psychomotor delay of the feedback process. This relationship is then used to estimate the motor circuit delay of several tasks for which Fitts’ law data are available in the literature. We consistently estimate the delay to be between 0 and 112 ms. A further consequence of this model is that not all combinations of slope and Y-intercept in Fitts’ law are possible when movements are generated by delayed feedback. In fact, it is only possible for an observed speed–accuracy trade-off to be generated by delayed feedback if the Fitts’ law coefficients satisfy −0.482 ≤ a/b ≤ 3.343 [bits] where b represents the slope in bits per second and a represents the Y-intercept in seconds. If we assume human movement is generated by delayed feedback, then the Fitts’ law coefficients should always be restricted to this range of values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andres RO, Hartung KJ (1989) Predictions of head movement time using Fitts’ law. Hum Factors 31: 703–713

    Google Scholar 

  • Annett J, Golby CW, Kay H (1958) The measurement of elements in an assembly task: the information output of the human motor system. Q J Exp Psychol 10: 1–11

    Google Scholar 

  • Barrett NC, Glencross DJ (1989) Response amendments during manual aiming movements to double-step targets. Acta Psychol 70: 205–217

    Article  CAS  Google Scholar 

  • Beamish D, Peskun C, Wu J (2005) Critical delay for overshooting in planned arm movements with delayed feedback. J Math Biol 50(1): 22–48

    Article  PubMed  Google Scholar 

  • Beamish D, MacKenzie IS, Wu J (2006) Speed-accuracy trade-off of planned arm movements with delayed feedback. Neural Netw 19: 582–599

    Article  CAS  PubMed  Google Scholar 

  • Beamish D, Bhatti SA, MacKenzie IS, Wu J (2006) 50 years later: a neurodynamic explanation of Fitts’ law. J Royal Soc Interface 3: 649–654

    Article  Google Scholar 

  • Beamish D, Bhatti S, Wu J, Jing Z (2008) Performance limitations from delay in human and mechanical motor control. Biol Cybern 99: 43–61

    Article  PubMed  Google Scholar 

  • Bullock D, Grossberg S (1988) Neural dynamics of planned arm movements: emergent invariants and speed-accuracy properties during trajectory formation. Psychol Rev 95: 49–90

    Article  CAS  PubMed  Google Scholar 

  • Burke D, Gracies JM, Mazevet D, Meunier S, Pierrot-Deseilligny E (1994) Non-monosynaptic transmission of the cortical command for voluntary movement in man. J Physiol 480: 191–202

    PubMed  Google Scholar 

  • Cabrera JL, Milton JG (2004) Human stick balancing: tuning Levy flights to improve balance control. Chaos 14: 691–698

    Article  PubMed  Google Scholar 

  • Cabrera JK, Borman R, Eurich C, Ohira T, Milton JG (2004) State-dependent noise and human balance control. Fluct Noise Lett 4: L107–L117

    Article  Google Scholar 

  • Cannon DJ (1994) Experiments with a target-threshold control theory model for deriving Fitts’ law parameters for human-machine systems. IEEE Trans Syst Man Cybern 24(8): 1089–1098

    Article  Google Scholar 

  • Carr CE, Konishi M (1988) Axonal delay lines for time measurement in the owl’s brainstem. Proc Natl Acad Sci USA 85: 831–8315

    Article  Google Scholar 

  • Cisek P (2001) A computational perspective on proprioception and movement guidance in parietal cortex. In: Nelson R (eds) The somatosensory system: deciphering the brain’s own body image. CRC Press, Boca Raton, FL, pp 275–297

    Google Scholar 

  • Connelly EM (1984) A control model: an alternative interpretation of Fitts’ law. In: Proceedings of the 28th Annual Meeting of the Human Factors Society, San Antonio, TX

  • Desmurget M, Epstein CM, Turner RS, Prablanc C, Alexander GE, Grafton ST (1999) Role of the posterior parietal cortex in updating reaching movements to a visual target. Nat Neurosci 2: 563

    Article  CAS  PubMed  Google Scholar 

  • Drury CG (1975) Application of Fitts’ law to foot-pedal design. Hum Factors 17: 368–373

    Google Scholar 

  • Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47: 381–391

    Article  CAS  PubMed  Google Scholar 

  • Fitts PM (1964) The information capacity of discrete motor responses. J Exp Psychol 67: 103–112

    Article  CAS  PubMed  Google Scholar 

  • Fitts PM, Radford BK (1966) Information capacity of discrete motor responses under different cognitive sets. J Exp Psychol 71(4): 475–482

    Article  CAS  PubMed  Google Scholar 

  • Gan K-C, Hoffmann ER (1988) Geometrical conditions for ballistic and visually controlled movements. Ergonomics 31: 829–839

    Article  CAS  PubMed  Google Scholar 

  • Gawthrop P, Lakie M, Loram I (2007) Predictive feedback control and Fitts’ law. Biol Cybern 98(3): 229–238

    Article  Google Scholar 

  • Georgopoulos AP (1995) Current issues in directional motor control. Trends Neurosci 18: 506–510

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233: 1416–1419

    Article  CAS  PubMed  Google Scholar 

  • Glencross D, Barrett N (1983) Programming precision in repetitive tapping. J Mot Behav 15: 191–200

    CAS  PubMed  Google Scholar 

  • Hollerback JM, Moore SP, Atkeson CG (1986) Workspace effect in arm movement kinematics derived from joint interpolation. In: Gantchev G, Dimitrov G, Gatev P (eds) Motor control. Plenum Press, New York, pp 197–208

    Google Scholar 

  • Jagacinski RJ, Flach JM (2003) Control theory for humans: quantitative apporaches to modelling performance. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Keele SW, Posner MI (1968) Processing of visual feedback in rapid movements. J Exp Psychol 77: 155–158

    Article  CAS  PubMed  Google Scholar 

  • Kerr BA (1977) Motor control in aimed movements. In: Christina RW, Langers DM (eds) Psychology of motor behavior and sport, vol. I. Human Kinetics Publishers, Champaign, IL, pp 269–276

    Google Scholar 

  • Kerr BA, Langolf GD (1977) Speed of aiming movements. Q J Exp Psychol 29: 475–481

    Article  Google Scholar 

  • Kerr R (1973) Movement time in an underwater environment. J Mot Behav 5: 175–178

    Google Scholar 

  • Kerr R (1978) Diving, adaptation, and Fitts’ law. J Mot Behav 10: 255–260

    CAS  PubMed  Google Scholar 

  • Kvalseth TO (1976) Distribution of movement time in a target-aiming task. Percept Mot Ski 43: 507–513

    Google Scholar 

  • Kvalseth TO (1977) A generalized model of temporal motor control subject to movement constraints. Ergonomics 20: 41–50

    Article  Google Scholar 

  • Macefield G, Gandevia S (1992) Peripheral and central delays in the cortical projections from the human truncal muscles. Brain 115: 123–135

    Article  PubMed  Google Scholar 

  • MacKenzie IS (1989) A note on the information-theoretic basis for Fitts’ law. J Mot Behav 21: 323–330

    CAS  PubMed  Google Scholar 

  • MacKenzie IS (1991) Fitts law as a performance model in human-computer interaction. Doctoral dissertation, University of Toronto

  • MacKenzie IS (1992) Fitts’ law as a research and design tool in human–computer interaction. Hum Comput Interact 7: 91–139

    Article  Google Scholar 

  • MacKenzie CL, Marteniuk RG, Dugas C, Liske D, Eickmeier B (1987) Three-dimensional movement trajectories in Fitts’ task: implications for control. Q J Exp Psychol 39A: 629–647

    Google Scholar 

  • Marteniuk RG, MacKenzie CI, Jeannerod M, Athenes S, Dugas C (1987) Constraints on human arm movement trajectories. Can J Psychol 41: 365–378

    CAS  PubMed  Google Scholar 

  • Meyer DE, Abrams RA, Kornblum S, Wright CE, Smith JEK (1988) Optimality in human motor performance: ideal control of rapid aimed movements. Psychol Rev 95(3): 340–370

    Article  CAS  PubMed  Google Scholar 

  • Miall RC (1996) Task dependent changes in visual feedback control: a frequency analysis of human manual tracking. J Mot Behav 28(2): 125–135

    PubMed  Google Scholar 

  • Miall RC, Wolpert DM (1996) Forward models for physiological motor control. Neural Netw 9: 1265–1279

    Article  PubMed  Google Scholar 

  • Moreau L, Sontag E (2003) Balancing at the edge of stability. Phys Rev Lett 68: 020901

    Google Scholar 

  • Phillips CA, Repperger DW (1997) Why engineers should know and use Fitts’ law? In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology, vol 4. Wright State University, Dayton, pp 1686–1689

  • Sabatini BL, Reghr WG (1996) Timing of neurotransmission at fast synapses in the mammalian brain. Nature 384: 170–172

    Article  CAS  PubMed  Google Scholar 

  • Soukoreff RW, MacKenzie IS (2004) Towards a standard for pointing device evaluation: perspectives on 27 years of Fitts’ law research in HCI. Int J Hum Comput Stud 61: 751–789

    Article  Google Scholar 

  • Stratford KJ, Tarczy-Hornoch K, Martin KAC, Bannister NJ, Jack JJB (1996) Excitatory synaptic inputs to spiny stellate cells in cat visual cortex. Nature 382: 258–261

    Article  CAS  PubMed  Google Scholar 

  • Sugden DA (1980) Movement speed in children. J Mot Behav 12: 125–132

    CAS  PubMed  Google Scholar 

  • Tunik E, Frey SH, Grafton ST (2005) Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nat Neurosci 8: 505–511

    CAS  PubMed  Google Scholar 

  • Venkadesan M, Guckenheimer J, Valero-Cuevas FJ (2007) Manipulating the edge of instability. J Biomech 40(8): 1653–1661

    Article  PubMed  Google Scholar 

  • Vetter P, Wolpert DM (2000) Context estimation for sensorimotor control. J Neurophysiol 84: 1026–1034

    CAS  PubMed  Google Scholar 

  • Welford AT (1968) Fundamentals of skill. Methuen, London

    Google Scholar 

  • Winstein CJ, Grafton ST, Pohl PS (1997) Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography. J Neurophysiol 70(3): 1581–1594

    Google Scholar 

  • Woodworth RS (1899) The accuracy of voluntary movement. Psychol Rev 3:1–119 (monograph supplement)

    Google Scholar 

  • Wu J (2001) Introduction to neural dynamics and signal transmission delay. De Gruyter series in Nonlinear Analysis and Applications, 6. Walter de Gruyter, Berlin

  • Zelaznik HN, Hawkings B, Kisselburgh L (1983) Rapid visual feedback processing in single aiming movements. J Mot Behav 15: 217–236

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Beamish.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (PDF 930 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beamish, D., Bhatti, S., Chubbs, C.S. et al. Estimation of psychomotor delay from the Fitts’ law coefficients. Biol Cybern 101, 279–296 (2009). https://doi.org/10.1007/s00422-009-0336-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-009-0336-3

Keywords

Navigation